Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4059 #73 Oct 18 2023 17:25:53
%S 0,1,6,7,4,5,26,27,24,25,30,31,28,29,18,19,16,17,22,23,20,21,106,107,
%T 104,105,110,111,108,109,98,99,96,97,102,103,100,101,122,123,120,121,
%U 126,127,124,125,114,115,112,113,118,119,116,117,74,75,72,73,78,79,76
%N Base -2 representation for n regarded as base 2, then evaluated.
%C a(n) = n when n is a power of 4. This is because the even-indexed powers of 2 are the same as the even-indexed powers of -2. - _Alonso del Arte_, Feb 09 2012
%C a(n) = n if n is a sum of distinct powers of 4. - _Michael Somos_, Aug 27 2012
%C Write n = Sum_{i in b(n)} (-2)^(i - 1), which uniquely determines the set of positive integers b(n). Then a(n) = Sum_{i in b(n)} 2^(i - 1). For example, a(7) = 27 because 7 = (-2)^0 + (-2)^1 + (-2)^3 + (-2)^4 and 27 = 2^0 + 2^1 + 2^3 + 2^4. - _Gus Wiseman_, Jul 26 2019
%D M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Reinhard Zumkeller, <a href="/A005351/b005351.txt">Table of n, a(n) for n = 0..8191</a>
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, p. 58-59
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Negabinary.html">Negabinary</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Negative_base">Negative base</a>
%H A. Wilks, <a href="/A005351/a005351.pdf">Email, May 22 1991</a>
%F a(4n+2) = 4a(n+1)+2, a(4n+3) = 4a(n+1)+3, a(4n+4) = 4a(n+1), a(4n+5) = 4a(n+1)+1, n>-2, a(1)=1. - _Ralf Stephan_, Apr 06 2004
%e 2 = 4+(-2)+0 = 110 => 6, 3 = 4+(-2)+1 = 111 => 7, ..., 6 = (16)+(-8)+0+(-2)+0 = 11010 => 26.
%t f[n_] := Module[{t = 2(4^Floor[ Log[4, Abs[n] + 1] + 2] - 1)/3}, BitXor[n + t, t]]; Table[ f[n]], {n, 0, 60}] (* _Robert G. Wilson v_, Jan 24 2005 *)
%o (Haskell)
%o a005351 0 = 0
%o a005351 n = a005351 n' * 2 + m where
%o (n', m) = if r < 0 then (q + 1, r + 2) else (q, r)
%o where (q, r) = quotRem n (negate 2)
%o -- _Reinhard Zumkeller_, Jul 07 2012
%o (Python)
%o def A005351(n):
%o s, q = '', n
%o while q >= 2 or q < 0:
%o q, r = divmod(q, -2)
%o if r < 0:
%o q += 1
%o r += 2
%o s += str(r)
%o return int(str(q)+s[::-1],2) # _Chai Wah Wu_, Apr 10 2016
%o (PARI) a(n) = my(t=(32*4^logint(abs(n)+1,4)-2)/3); bitxor(n+t,t); \\ _Ruud H.G. van Tol_, Oct 18 2023
%Y Cf. A039724. Complement of A005352.
%Y Cf. A185269 (primes in this sequence).
%Y Cf. A000120, A029931, A035327, A053985, A065359, A070939, A326032.
%K nonn,base,easy,nice,look
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Robert G. Wilson v_, Jan 24 2005