login
A005350
a(1) = a(2) = a(3) = 1, a(n) = a(a(n-1)) + a(n-a(n-1)) for n >= 4.
(Formerly M0253)
7
1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 15, 16, 16, 17, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28
OFFSET
1,4
COMMENTS
a(n) - a(n-1) = 0 or 1 (see the 1991 Monthly reference). - Emeric Deutsch, Jun 06 2005
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20.
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
D. Kleitman, Solution to Problem E3274, Amer. Math. Monthly, 98 (1991), 958-959.
MAPLE
A005350 := proc(n) option remember; if n<=3 then 1 else procname(procname(n-1)) + procname(n-procname(n-1)); end if; end proc:
seq(A005350(n), n=1..64) ;
MATHEMATICA
a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[a[n-1]] + a[n-a[n-1]]; Table[a[n], {n, 1, 64}] (* Jean-François Alcover, Feb 11 2014 *)
PROG
(Haskell)
a005350 n = a005350_list !! (n-1)
a005350_list = 1 : 1 : 1 : h 4 1 where
h x y = z : h (x + 1) z where z = a005350 y + a005350 (x - y)
-- Reinhard Zumkeller, Jul 20 2012
(SageMath)
@CachedFunction
def a(n): return 1 if (n<4) else a(a(n-1)) + a(n-a(n-1))
[a(n) for n in range(1, 100)] # G. C. Greubel, Nov 14 2022
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved