login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344497
Matching number of the divisor graph of {1,...,n}.
1
0, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 7, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 21, 21, 21, 21, 22, 23, 23, 23, 24, 24, 25, 25, 26, 26, 26, 26, 27, 28, 28, 28, 29, 29, 30, 30, 31, 31
OFFSET
1,4
COMMENTS
a(n) is the matching number of the graph on vertices {1,...,n} in which two vertices are connected by an edge if one divides another.
The maximum matching in a graph can be calculated by the blossom algorithm.
By considering the matching k-2k with k = floor(n/4)+1,...,floor(n/2), we obtain the inequality: floor(n/4) <= a(n).
FORMULA
floor(n/4) <= a(n) <= floor(n/2).
EXAMPLE
a(10) = 5, since the divisor graph of {1,...,10} has a perfect matching: 1-7, 2-6, 3-9, 4-8, 5-10, which is a matching of size 5.
PROG
(C++) // program available at Revenant link
CROSSREFS
Sequence in context: A166079 A269381 A080677 * A316628 A153112 A005350
KEYWORD
nonn
AUTHOR
Paul Revenant, May 21 2021
STATUS
approved