login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n. 1
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).

T(2*n, n) = A094420(n).

EXAMPLE

Triangle starts:

[0] 1;

[1] 0, 1;

[2] 0, 1,      1;

[3] 0, 3,      2,       1;

[4] 0, 13,     10,      3,       1;

[5] 0, 75,     74,      21,      4,      1;

[6] 0, 541,    730,     219,     36,     5,     1;

[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;

[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;

[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;

MAPLE

F := proc(n) option remember; if n = 0 then return 1 fi:

expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:

seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);

PROG

(SageMath)

@cached_function

def F(n):

    R.<x> = PolynomialRing(ZZ)

    if n == 0: return R(1)

    return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))

def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]

for n in range(10): print(Fval(n))

CROSSREFS

Written as an array this is A094416 (with missing column 0).

The coefficients of the Fubini polynomials are A131689.

Cf. A094420.

Sequence in context: A325111 A085771 A253286 * A284799 A111106 A321964

Adjacent sequences:  A344496 A344497 A344498 * A344500 A344501 A344502

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, May 21 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 03:17 EST 2021. Contains 349590 sequences. (Running on oeis4.)