login
A258989
Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).
9
6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
OFFSET
0,1
FORMULA
zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
EXAMPLE
0.67452391403396814049156060825742993927838436513788957970691722144377...
MATHEMATICA
RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
PROG
(PARI) zetamult([2, 4]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).
Sequence in context: A092678 A019932 A004447 * A005351 A098882 A254374
KEYWORD
nonn,cons,easy,changed
AUTHOR
STATUS
approved