login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A258991
Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).
8
0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
OFFSET
0,2
FORMULA
zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).
EXAMPLE
0.08367311301649536161489043654238770543824673255415416836075918355438...
MATHEMATICA
Join[{0}, RealDigits[(1/2)*(Zeta[4]^2 - Zeta[8]), 10, 106] // First]
PROG
(PARI) zetamult([4, 4]) \\ Charles R Greathouse IV, Jan 21 2016
(PARI) (zeta(4)^2-zeta(8))/2 \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).
Sequence in context: A228211 A010522 A197332 * A132035 A153813 A316166
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved