login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258982
Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,3).
9
0, 3, 7, 7, 0, 7, 6, 7, 2, 9, 8, 4, 8, 4, 7, 5, 4, 4, 0, 1, 1, 3, 0, 4, 7, 8, 2, 2, 9, 3, 6, 5, 9, 9, 1, 4, 8, 2, 2, 6, 0, 1, 3, 1, 9, 4, 1, 5, 2, 7, 7, 5, 2, 4, 0, 1, 2, 6, 4, 5, 0, 7, 7, 8, 0, 3, 9, 1, 0, 9, 3, 8, 7, 5, 5, 5, 0, 7, 2, 1, 9, 8, 9, 1, 3, 8, 3, 6, 0, 2, 9, 8, 1, 9, 0, 7, 7, 0, 8, 6
OFFSET
0,2
FORMULA
zetamult(5,3) = Sum_{m>=2} (sum_{n=1..m-1} 1/(m^5*n^3)).
Equals Sum_{m>=2} (H(m-1, 3)+polygamma(2,1)/2+zeta(3))/m^5, where H(n,3) is the n-th harmonic number of order 3.
Also equals Sum_{m>=2} (polygamma(2,m)+zeta(3))/(2m^5).
Also equals 5*zeta(3)*zeta(5) - (147/24)*zeta(8) - (5/2)*zetamult(6, 2), where zetamult(6,2) is A258947.
EXAMPLE
0.03770767298484754401130478229365991482260131941527752401264507780391...
MATHEMATICA
digits = 99; zetamult[6, 2] = NSum[HarmonicNumber[m-1, 2]/m^6, {m, 2, Infinity}, WorkingPrecision -> digits+20, NSumTerms -> 200, Method -> {"NIntegrate", "MaxRecursion" -> 18}]; zetamult[5, 3] = 5*Zeta[3]*Zeta[5] - (147/24)*Zeta[8] - (5/2)*zetamult[6, 2]; Join[{0}, RealDigits[zetamult[5, 3], 10, digits] // First]
PROG
(PARI) zetamult([5, 3]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved