login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373862
Decimal expansion of Sum_{k >= 1} log(k)/(k*sqrt(k+1)).
0
3, 7, 7, 1, 0, 0, 9, 4, 9, 1, 4, 0, 0, 9, 2, 3, 2, 2, 6, 0, 7, 9, 0, 8, 1, 1, 3, 7, 6, 7, 7, 3, 3, 8, 4, 1, 2, 4, 3, 5, 0, 9, 3, 6, 9, 9, 8, 4, 2, 2, 3, 1, 9, 0, 7, 3, 0, 0, 0, 9, 4, 4, 5, 9, 5, 9, 1, 8, 9, 2, 3, 5, 5, 0, 5, 6, 2, 1, 7, 4, 2, 9, 2, 2, 9, 0, 5, 2, 2, 9, 5, 7, 1, 7, 9, 9, 3, 6, 0, 5, 6, 7, 4, 6, 3
OFFSET
1,1
FORMULA
Equals sum_{l>=0} (-1)^(l+1) (2l-1)!! *Zeta'(3/2+l) /(2l)!!.
EXAMPLE
3.77100949140092...
MAPLE
Digits := 120 ;
x := 0.0 ;
for l from 0 to 600 do
x := x+(-1)^(l+1)*doublefactorial(2*l-1)/doublefactorial(2*l)*Zeta(1, 3/2+l) ;
x := evalf(x) ;
print(x) ;
end do: # R. J. Mathar, Jun 27 2024
PROG
(PARI) default(realprecision, 200); sumalt(k=0, (-1)^(k+1) * (2*k)! * zeta'(k+3/2) / (k!^2 * 4^k)) \\ Vaclav Kotesovec, Jun 27 2024
CROSSREFS
Cf. A131688.
Sequence in context: A009467 A258982 A227336 * A353049 A288093 A131608
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Jun 19 2024
EXTENSIONS
More terms from Vaclav Kotesovec, Jun 27 2024
STATUS
approved