OFFSET
1,1
COMMENTS
8*sqrt(2) / (3*a) is the maximum curvature of the Folium of Descartes x^3 + y^3 - 3*a*x*y = 0, occurring at the point M of coordinates (3a/2, 3a/2). The corresponding minimum radius of curvature is (3*sqrt(2))*a/16.
This point M is at the intersection of the first bisector with the loop, distinct from O (see curves).
LINKS
Robert Ferréol, Cartesian folium, Mathcurve.
John A. Tierney, Problem 417, Crux Mathematicorum, Vol. 5, No. 10 (1979), pp. 308-310.
Eric Weisstein's World of Mathematics, Folium of Descartes.
Wikipedia, Folium of Descartes.
FORMULA
Equals 8*A131594.
EXAMPLE
3.771236166328253463471169931225...
MAPLE
evalf(8*sqrt(2)/3, 100);
MATHEMATICA
RealDigits[8*Sqrt[2]/3, 10, 100][[1]] (* Amiram Eldar, Apr 20 2022 *)
PROG
(PARI) 8*sqrt(2)/3 \\ Michel Marcus, Apr 20 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Apr 20 2022
STATUS
approved