login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 8*sqrt(2) / 3.
0

%I #27 Apr 22 2022 05:42:12

%S 3,7,7,1,2,3,6,1,6,6,3,2,8,2,5,3,4,6,3,4,7,1,1,6,9,9,3,1,2,2,5,8,6,1,

%T 5,4,2,8,5,2,4,5,8,3,3,4,3,3,8,5,2,8,1,9,5,1,3,7,8,1,2,6,3,4,6,4,1,9,

%U 5,3,2,7,5,8,9,8,9,5,2,1,0,3,6,0,1,0,3,3,4,2,4,8,7,3,7,1,0,8

%N Decimal expansion of 8*sqrt(2) / 3.

%C 8*sqrt(2) / (3*a) is the maximum curvature of the Folium of Descartes x^3 + y^3 - 3*a*x*y = 0, occurring at the point M of coordinates (3a/2, 3a/2). The corresponding minimum radius of curvature is (3*sqrt(2))*a/16.

%C This point M is at the intersection of the first bisector with the loop, distinct from O (see curves).

%H Robert Ferréol, <a href="https://mathcurve.com/courbes2d.gb/foliumdedescartes/foliumdedescartes.shtml">Cartesian folium</a>, Mathcurve.

%H John A. Tierney, <a href="https://cms.math.ca/wp-content/uploads/crux-pdfs/Crux_v5n10_Dec.pdf">Problem 417</a>, Crux Mathematicorum, Vol. 5, No. 10 (1979), pp. 308-310.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FoliumofDescartes.html">Folium of Descartes</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Folium_of_Descartes">Folium of Descartes</a>.

%H <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Cu">Index to sequences related to curves</a>.

%F Equals 8*A131594.

%e 3.771236166328253463471169931225...

%p evalf(8*sqrt(2)/3,100);

%t RealDigits[8*Sqrt[2]/3, 10, 100][[1]] (* _Amiram Eldar_, Apr 20 2022 *)

%o (PARI) 8*sqrt(2)/3 \\ _Michel Marcus_, Apr 20 2022

%Y Cf. A295709 (arc length of the loop of the Folium of Descartes).

%Y Cf. A002193, A131594.

%K nonn,cons

%O 1,1

%A _Bernard Schott_, Apr 20 2022