The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131707 Period 12: repeat 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9 . 6
 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9, 1, 1, 3, 7, 7, 1, 9, 9, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also the decimal expansion of 1023949/9000009. [R. J. Mathar, Feb 07 2009] LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1). FORMULA a(n) = (1/66)*{49*(n mod 12)-28*[(n+1) mod 12]+5*[(n+2) mod 12]+27*[(n+3) mod 12]+16*[(n+4) mod 12]+5*[(n+5) mod 12]-39*[(n+6) mod 12]+38*[(n+7) mod 12]+5*[(n+8) mod 12]-17*[(n+9) mod 12]-6*[(n+10) mod 12]+5*[(n+11) mod 12]}, with n>=0. - Paolo P. Lava, Oct 02 2007 a(n) = A001333(n) mod 10. - Paul Curtz, Apr 08 2008 G.f.: (1+2x^2+4x^3-6x^5+9x^6)/((1-x)(1+x^2)(1-x^2+x^4)). a(n)=a(n-1)-a(n-6)+a(n-7). [R. J. Mathar, Feb 07 2009] a(n) = 5-2*cos(Pi*n/6) -2*sin(Pi*n/6)/3 -10*sin(Pi*n/2)/3 -2*cos(5*Pi*n/6) -2*sin(5*Pi*n/6)/3. - R. J. Mathar, Oct 08 2011 MATHEMATICA PadRight[{}, 120, {1, 1, 3, 7, 7, 1, 9, 9, 7, 3, 3, 9}] (* Harvey P. Dale, May 02 2012 *) CROSSREFS Cf. A131711. Sequence in context: A227336 A288093 A131608 * A016620 A200691 A021269 Adjacent sequences:  A131704 A131705 A131706 * A131708 A131709 A131710 KEYWORD nonn,easy AUTHOR Paul Curtz, Sep 14 2007 EXTENSIONS More terms from Tracy Poff (tracy.poff(AT)gmail.com), Dec 21 2008 Even more periods from R. J. Mathar, Feb 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 09:24 EDT 2021. Contains 342886 sequences. (Running on oeis4.)