login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131708
A024494 prefixed by a 0.
19
0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811, 22369622, 44739243, 89478485, 178956970, 357913941, 715827883, 1431655766, 2863311531, 5726623061, 11453246122
OFFSET
0,3
COMMENTS
Binomial transform of 0, 1, 0. Also A024495 = first differences.
Recurrence: a(n+1) - 2*a(n) = 1, 0, -1, -1, 0, 1, 1.
{A024493, A131708, A024495} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x)} of order 3. For the definitions of {h_i(x)} and the difference analog {H_i(n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Aug 01 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
LINKS
Antoine-Augustin Cournot, Solution d'un problème d'analyse combinatoire, Bulletin des Sciences Mathématiques, Physiques et Chimiques, item 34, volume 11, 1829, pages 93-97. Also at Google Books. Page 97 case p=3 formula y^(1) = a(n).
Christian Ramus, Solution générale d'un problème d'analyse combinatoire, Journal für die Reine und Angewandte Mathematik (Crelle's journal), volume 11, 1834, pages 353-355. Page 353 case p=3 formula y^(1) = a(n).
FORMULA
G.f.: x*(1-x)/((1-2*x)*(1-x+x^2)). - R. J. Mathar, Nov 14 2007
Recurrences:
a(n) = k*a(n-1) + (6-3*k)*a(n-2) + (3*k-7)*a(n-3) + (6-2*k)*a(n-4).
k = 0: a(n) = 6*a(n-2) - 7*a(n-3) + 6*a(n-4).
k = 1: a(n) = a(n-1) + 3*a(n-2) - 4*a(n-3) + 4*a(n-4).
k = 2: a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4), cf. A113405, A135350.
k = 3: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3), this sequence.
k = 4: a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4), cf. A111927.
k = 5: a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4), cf. A137221.
The sum of coefficients = 5 - k. Of the family k=3 gives the best recurrence.
a(n+m) = a(n)*A024493(m) + A024493(n)*a(m) + A024495(n)*A024495(m). - Vladimir Shevelev, Aug 01 2017
From Kevin Ryde, Sep 24 2020: (Start)
a(n) = (1/3)*2^n - (1/3)*cos((1/3)*Pi*n) + (1/sqrt(3))*sin((1/3)*Pi*n). [Cournot]
a(n) + A024495(n) + A111927(n) = 2^n - 1. [Cournot, page 96 last formula, but misprint should be 2^x - 1 rather than 2^p - 1]. (End)
a(n) = C(n,1) + C(n,4) + ... + C(n, 3*floor(n/3)+1). - Jianing Song, Oct 04 2021
MATHEMATICA
LinearRecurrence[{3, -3, 2}, {0, 1, 2}, 40] (* Harvey P. Dale, Nov 27 2013 *)
PROG
(PARI) v=vector(99, i, i); for(i=4, #v, v[i]=3*v[i-1]-3*v[i-2]+2*v[i-3]); v \\ Charles R Greathouse IV, Jun 01 2011
(Magma) [n le 3 select n-1 else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 23 2023
(SageMath)
def A131708(n): return (1/3)*(2^n -chebyshev_U(n, 1/2) +2*chebyshev_U(n-1, 1/2))
[A131708(n) for n in range(41)] # G. C. Greubel, Jan 23 2023
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 14 2007, Mar 01 2008
STATUS
approved