login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348722
Decimal expansion of 4*cos(8*Pi/13)*cos(12*Pi/13).
2
1, 3, 7, 7, 2, 0, 2, 8, 5, 3, 9, 7, 2, 9, 5, 7, 7, 1, 1, 7, 2, 1, 7, 5, 0, 4, 9, 3, 1, 6, 0, 1, 2, 0, 4, 1, 3, 6, 1, 4, 3, 4, 7, 4, 2, 3, 3, 6, 2, 1, 7, 9, 1, 4, 8, 5, 5, 3, 2, 2, 2, 6, 5, 1, 1, 6, 8, 7, 5, 2, 5, 1, 8, 1, 1, 6, 5, 0, 2, 1, 7, 7, 6, 8, 2, 2, 3, 3, 1, 9, 6, 0, 9, 2, 5, 6, 8, 5, 5, 7
OFFSET
1,2
COMMENTS
Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
In the case a = 1, corresponding to the prime p = 13, Shanks' cyclic cubic is x^3 - x^2 - 4*x - 1 of discriminant 13^2. The three real roots of the cubic are r_0 = 4*cos(2*Pi/13)*cos(3*Pi/13) = 2.6510934089..., r_1 = - 4*cos(4*Pi/13)*cos(6*Pi/13) = - 0.2738905549... and r_2 = - 4*cos(8*Pi/13)*cos(12*Pi/13) = - 1.3772028539.... Here we consider the absolute value of the root r_2.
See A348720 and A348721 for the other two roots.
LINKS
T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158 (see case 4 in the Table)
D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
FORMULA
Equals 4*cos(Pi/13)*cos(5*Pi/13).
Equals 2*(cos(4*Pi/13) + cos(6*Pi/13)).
Equals 2*(cos(Pi/13) + cos(5*Pi/13) - cos(2*Pi/13) - cos(10*Pi/13)) - 1.
Equals sin(2*Pi/13)*sin(3*Pi/13)/(sin(Pi/13)*sin(5*Pi/13)).
Equals Product_{n >= 0} (13*n+2)*(13*n+3)*(13*n+10)*(13*n+11)/( (13*n+1)*(13*n+5)*(13*n+8)*(13*n+12) ).
Equivalently, let z = exp(2*Pi*i/13). Then the constant equals abs( (1 - z^2)*(1 - z^3)/((1 - z)*(1 - z^5)) ).
Note: C = {1, 5, 8, 12} is the subgroup of nonzero cubic residues in the finite field Z_13 with cosets 2*C = {2, 3, 10, 11} and 4*C = {4, 6, 7, 9}.
Equals (-1)^(4/13) + (-1)^(6/13) - (-1)^(7/13) - (-1)^(9/13). - Peter Luschny, Nov 08 2021
EXAMPLE
1.3772028539729577117217504931601204136143474233621 ...
MAPLE
evalf(4*cos(8*Pi/13)*cos(12*Pi/13), 100);
MATHEMATICA
RealDigits[4*Cos[8*Pi/13]*Cos[12*Pi/13], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
KEYWORD
nonn,easy,cons
AUTHOR
Peter Bala, Oct 31 2021
STATUS
approved