login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348724
Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 19.
2
2, 2, 1, 8, 7, 6, 1, 6, 2, 2, 6, 3, 1, 9, 0, 9, 3, 4, 2, 6, 6, 6, 8, 0, 0, 5, 0, 1, 8, 5, 0, 5, 0, 6, 1, 5, 5, 9, 9, 1, 9, 5, 4, 9, 4, 4, 0, 7, 7, 5, 2, 7, 3, 3, 6, 0, 0, 9, 1, 5, 1, 0, 8, 4, 9, 0, 9, 8, 5, 2, 4, 2, 8, 4, 1, 4, 9, 6, 9, 2, 0, 8, 7, 2, 1, 9, 9, 1, 6, 9, 6, 4, 5, 1, 1, 0, 3, 3, 2, 2
OFFSET
0,1
COMMENTS
Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
In the case a = 2, corresponding to the prime p = 19, Shanks' cyclic cubic is x^3 - 2*x^2 - 5*x - 1 of discriminant 19^2. The polynomial has three real roots, one positive and two negative. Let r_0 = 3.507018644... denote the positive root. The other roots are r_1 = - 1/(1 + r_0) = - 0.2218761622... and r_2 = - 1/(1 + r_1) = - 1.2851424818.... See A348723 and A348725.
Here we consider the absolute value of the root r_1. In Cusick and Schoenfeld r_1 is denoted by E_2. See case 9 in the table.
LINKS
T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158
D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
FORMULA
|r_1| = 2*(cos(3*Pi/19) + cos(5*Pi/19) - cos(2*Pi/19)) - 1.
|r_1| = sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19) *sin(9*Pi/19)) = 1/(8*cos(2*Pi/19)*cos(3*Pi/19)*cos(5*Pi/19)).
|r_1| = Product_{n >= 0} (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17)/( (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15) ).
Let z = exp(2*Pi*i/19). Then
|r_1| = abs( (1 - z^2)*(1 - z^3)*(1 - z^5)/((1 - z^4)*(1 - z^6)*(1 - z^9)) ).
Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
Equals -1 - (-1)^(2/19) + (-1)^(3/19) + (-1)^(5/19) - (-1)^(14/19) - (-1)^(16/19) + (-1)^(17/19). - Peter Luschny, Nov 08 2021
EXAMPLE
0.22187616226319093426668005018505061559919549440775...
MAPLE
evalf(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)), 100);
MATHEMATICA
RealDigits[Sin[2*Pi/19]*Sin[3*Pi/19]*Sin[5*Pi/19]/(Sin[4*Pi/19]*Sin[6*Pi/19]*Sin[9*Pi/19]), 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
PROG
(PARI) sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)) \\ Michel Marcus, Nov 08 2021
KEYWORD
nonn,cons,easy
AUTHOR
Peter Bala, Oct 31 2021
STATUS
approved