

A197110


Decimal expansion of Pi^4/120.


11



8, 1, 1, 7, 4, 2, 4, 2, 5, 2, 8, 3, 3, 5, 3, 6, 4, 3, 6, 3, 7, 0, 0, 2, 7, 7, 2, 4, 0, 5, 8, 7, 5, 9, 2, 7, 0, 8, 1, 0, 6, 3, 2, 1, 3, 9, 3, 9, 0, 4, 5, 1, 8, 0, 7, 6, 2, 2, 3, 2, 1, 6, 1, 5, 8, 3, 0, 9, 0, 4, 6, 2, 1, 4, 0, 2, 2, 6, 6, 3, 4, 9, 1, 7, 6, 8, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Decimal expansion of the double Zetafunction zeta(2,2). Not to be confused with the Hurwitz Zeta function of two arguments or with the second derivative of the Riemann Zeta function.


LINKS

Table of n, a(n) for n=0..86.
R. E. Crandall, J. P. Buhler, On the evaluation of Euler sums, Exper. Math. 3 (1994), 275.
Wikipedia, Multiple zeta function


FORMULA

Equals sum_{n=2..infinity} sum_{m=1..n1} 1/(n*m)^2.


EXAMPLE

0.8117424... = A164109/40 .


MAPLE

evalf(Pi^4/120) ;


MATHEMATICA

First[RealDigits[Pi^4/120, 10, 100]] (* Geoffrey Critzer, Nov 03 2013 *)


PROG

(PARI) Pi^4/120 \\ Charles R Greathouse IV, Apr 17 2015
(PARI) zetamult([2, 2]) \\ Charles R Greathouse IV, Apr 17 2015


CROSSREFS

Cf. A164109.
Sequence in context: A172428 A248581 A178163 * A109571 A133823 A168643
Adjacent sequences: A197107 A197108 A197109 * A197111 A197112 A197113


KEYWORD

cons,nonn,easy


AUTHOR

R. J. Mathar, Oct 10 2011


EXTENSIONS

More terms from D. S. McNeil, Oct 10 2011
Definition simplified by R. J. Mathar, Feb 05 2013


STATUS

approved



