login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197112
Numbers k such that phi(k) = phi(k+1) + phi(k+2).
2
193, 3529, 9337, 27229, 46793, 78181, 90193, 112993, 135013, 437183, 849403, 935219, 1078579, 1283599, 1986973, 2209583, 2341183, 2411173, 2689693, 2744143, 3619069, 3712543, 4738183, 5132983, 6596119, 7829029, 8184713
OFFSET
1,1
COMMENTS
For k less than 4*10^6, k is prime, semiprime, or triprime (3-almost prime).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..289 (calculated using the b-file at A066232)
FORMULA
a(n) = A066232(n)-2. - Donovan Johnson, Oct 14 2011
EXAMPLE
112993 is in the sequence, because phi(112993) = 106704, phi(112994) = 48384, phi(112995) = 58320 and 106704 = 48384 + 58320.
MAPLE
for k from 0 do
if numtheory[phi](k) = numtheory[phi](k+1)+numtheory[phi](k+2) then
printf("%d\n", k) ;
end if;
end do: # R. J. Mathar, Oct 13 2011
MATHEMATICA
Select[Range[10^5], EulerPhi[#] == EulerPhi[# + 1] + EulerPhi[# + 2] &] (* Alonso del Arte, Oct 13 2011 *)
Position[Partition[EulerPhi[Range[82*10^5]], 3, 1], _?(#[[1]]==#[[2]]+#[[3]]&), 1, Heads->False]//Flatten (* Harvey P. Dale, May 10 2022 *)
PROG
(PARI) isok(n) = eulerphi(n) == eulerphi(n+1) + eulerphi(n+2); \\ Michel Marcus, May 15 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Oct 10 2011
EXTENSIONS
a(27) from Vincenzo Librandi, Sep 27 2013
STATUS
approved