login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172428
Triangle T(n, k, q) = c(n,q)/( c(k,q)*c(n-k,q) ), where c(n, q) = Product_{j=1..n} f(n, q), f(n, q) = ( (1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n) )/2, and q = 3, read by rows.
3
1, 1, 1, 1, -8, 1, 1, 6, 6, 1, 1, -80, 60, -80, 1, 1, 120, 1200, 1200, 120, 1, 1, -728, 10920, -145600, 10920, -728, 1, 1, 5040, 458640, 9172800, 9172800, 458640, 5040, 1, 1, -6560, 4132800, -501446400, 752169600, -501446400, 4132800, -6560, 1, 1, 362880, 297561600, 249951744000, 2274560870400, 2274560870400, 249951744000, 297561600, 362880, 1
OFFSET
0,5
FORMULA
T(n, k, q) = c(n,q)/( c(k,q)*c(n-k,q) ), where c(n, q) = Product_{j=1..n} f(n, q), f(n, q) = ( (1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n) )/2, and q = 3.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -8, 1;
1, 6, 6, 1;
1, -80, 60, -80, 1;
1, 120, 1200, 1200, 120, 1;
1, -728, 10920, -145600, 10920, -728, 1;
1, 5040, 458640, 9172800, 9172800, 458640, 5040, 1;
1, -6560, 4132800, -501446400, 752169600, -501446400, 4132800, -6560, 1;
MATHEMATICA
f[n_, q_]:= ((1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n))/2;
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return ((1-q^n)*(1+(-1)^n) + factorial(n)*(1-(-1)^n))/2
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return c(n, q)/(c(k, q)*c(n-k, q))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 07 2021
CROSSREFS
Cf. A172427 (q=3), this sequence (q=4), A172429 (q=5).
Sequence in context: A359540 A010151 A021556 * A248581 A178163 A197110
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 02 2010
EXTENSIONS
Edited by G. C. Greubel, May 07 2021
STATUS
approved