|
|
A172427
|
|
Triangle T(n, k, q) = c(n,q)/( c(k,q)*c(n-k,q) ), where c(n, q) = Product_{j=1..n} f(n, q), f(n, q) = ( (1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n) )/2, and q = 2, read by rows.
|
|
3
|
|
|
1, 1, 1, 1, -3, 1, 1, 6, 6, 1, 1, -15, 30, -15, 1, 1, 120, 600, 600, 120, 1, 1, -63, 2520, -6300, 2520, -63, 1, 1, 5040, 105840, 2116800, 2116800, 105840, 5040, 1, 1, -255, 428400, -4498200, 35985600, -4498200, 428400, -255, 1, 1, 362880, 30844800, 25909632000, 108820454400, 108820454400, 25909632000, 30844800, 362880, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
T(n, k, q) = c(n,q)/( c(k,q)*c(n-k,q) ), where c(n, q) = Product_{j=1..n} f(n, q), f(n, q) = ( (1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n) )/2, and q = 2.
|
|
EXAMPLE
|
Triangle begins as:
1;
1, 1;
1, -3, 1;
1, 6, 6, 1;
1, -15, 30, -15, 1;
1, 120, 600, 600, 120, 1;
1, -63, 2520, -6300, 2520, -63, 1;
1, 5040, 105840, 2116800, 2116800, 105840, 5040, 1;
1, -255, 428400, -4498200, 35985600, -4498200, 428400, -255, 1;
|
|
MATHEMATICA
|
f[n_, q_]:= ((1-q^n)*(1+(-1)^n) + n!*(1-(-1)^n))/2;
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
|
|
PROG
|
(Sage)
@CachedFunction
def f(n, q): return ((1-q^n)*(1+(-1)^n) + factorial(n)*(1-(-1)^n))/2
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return c(n, q)/(c(k, q)*c(n-k, q))
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 07 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|