login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157243
Triangle T(n, k) = A001263(n*f(n,k) + 1, f(n,k) + 1), where f(n, k) = k if k <= floor(n/2) otherwise n-k, read by rows.
1
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 336, 10, 1, 1, 15, 825, 825, 15, 1, 1, 21, 1716, 197676, 1716, 21, 1, 1, 28, 3185, 512050, 512050, 3185, 28, 1, 1, 36, 5440, 1163800, 294296640, 1163800, 5440, 36, 1, 1, 45, 8721, 2395575, 778076145, 778076145, 2395575, 8721, 45, 1
OFFSET
0,5
FORMULA
T(n, k) = A001263(n*f(n,k) + 1, f(n,k) + 1), where f(n, k) = k if k <= floor(n/2) otherwise n-k.
T(n, n-k) = T(n, k).
T(n, 1) = A000217(n). - G. C. Greubel, Jan 11 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 336, 10, 1;
1, 15, 825, 825, 15, 1;
1, 21, 1716, 197676, 1716, 21, 1;
1, 28, 3185, 512050, 512050, 3185, 28, 1;
1, 36, 5440, 1163800, 294296640, 1163800, 5440, 36, 1;
1, 45, 8721, 2395575, 778076145, 778076145, 2395575, 8721, 45, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], k, n-k];
A001263[n_, k_]:= Binomial[n-1, k-1]*Binomial[n, k]/(n-k+1);
T[n_, k_]:= A001263[n*f[n, k] +1, f[n, k] +1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
PROG
(Magma)
f:= func< n, k | k le Floor(n/2) select k else n-k >;
A001263:= func< n, k | Binomial(n-1, k-1)*Binomial(n, k)/(n-k+1) >;
[A001263(n*f(n, k)+1, f(n, k)+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
(Sage)
def f(n, k): return k if (k <= (n//2)) else n-k
def A001263(n, k): return binomial(n-1, k-1)*binomial(n, k)/(n-k+1)
flatten([[A001263(n*f(n, k)+1, f(n, k)+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 25 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 11 2022
STATUS
approved