OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = A001263(n*f(n,k) + 1, f(n,k) + 1), where f(n, k) = k if k <= floor(n/2) otherwise n-k.
T(n, n-k) = T(n, k).
T(n, 1) = A000217(n). - G. C. Greubel, Jan 11 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 336, 10, 1;
1, 15, 825, 825, 15, 1;
1, 21, 1716, 197676, 1716, 21, 1;
1, 28, 3185, 512050, 512050, 3185, 28, 1;
1, 36, 5440, 1163800, 294296640, 1163800, 5440, 36, 1;
1, 45, 8721, 2395575, 778076145, 778076145, 2395575, 8721, 45, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], k, n-k];
A001263[n_, k_]:= Binomial[n-1, k-1]*Binomial[n, k]/(n-k+1);
T[n_, k_]:= A001263[n*f[n, k] +1, f[n, k] +1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
PROG
(Magma)
f:= func< n, k | k le Floor(n/2) select k else n-k >;
A001263:= func< n, k | Binomial(n-1, k-1)*Binomial(n, k)/(n-k+1) >;
[A001263(n*f(n, k)+1, f(n, k)+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
(Sage)
def f(n, k): return k if (k <= (n//2)) else n-k
def A001263(n, k): return binomial(n-1, k-1)*binomial(n, k)/(n-k+1)
flatten([[A001263(n*f(n, k)+1, f(n, k)+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 25 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 11 2022
STATUS
approved