|
|
A202812
|
|
T(n,k) = Number of n X k nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.
|
|
7
|
|
|
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 32, 10, 1, 1, 15, 121, 121, 15, 1, 1, 21, 356, 1177, 356, 21, 1, 1, 28, 881, 8232, 8232, 881, 28, 1, 1, 36, 1925, 43483, 146300, 43483, 1925, 36, 1, 1, 45, 3830, 185051, 1874539, 1874539, 185051, 3830, 45, 1, 1, 55, 7083, 666610
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts:
.1..1.....1.......1..........1.............1................1
.1..3.....6......10.........15............21...............28
.1..6....32.....121........356...........881.............1925
.1.10...121....1177.......8232.........43483...........185051
.1.15...356....8232.....146300.......1874539.........17870566
.1.21...881...43483....1874539......60758779.......1420586923
.1.28..1925..185051...17870566....1420586923......83834499040
.1.36..3830..666610..133496644...24496279000....3569257400553
.1.45..7083.2105474..817995997..324818660255..111459151645204
.1.55.12352.5980085.4261304129.3450301922085.2641129540510016
|
|
LINKS
|
|
|
FORMULA
|
Empirical: columns of T(n,k) are polynomials in n of degree k*(k-1).
For elements increasing by 0..d instead of 0..2, columns are a polynomial of degree d*k*(k-1)/2.
|
|
EXAMPLE
|
Some solutions for n=5, k=3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..2....0..0..2....0..0..1
..0..0..0....0..0..2....0..2..2....0..0..1....0..2..2....0..1..2....0..0..2
..0..0..1....0..2..2....0..2..2....0..2..3....0..2..3....0..1..2....0..0..2
..0..0..1....0..2..4....0..2..2....0..2..3....0..2..4....0..2..4....0..0..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|