login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202810
Number of nX6 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2
1
1, 21, 881, 43483, 1874539, 60758779, 1420586923, 24496279000, 324818660255, 3450301922085, 30392148400009, 228299392737693, 1495681511952100, 8702151387743758, 45631559860107036, 218282278670309658
OFFSET
1,2
COMMENTS
Column 6 of A202812
LINKS
FORMULA
Empirical: a(n) = (1277297393/8289151869130970582384640000000)*n^30 + (1277297393/61401124956525708017664000000)*n^29 + (297094789/218819386084962100838400000)*n^28 + (7816341527/139600890389978873856000000)*n^27 + (3679424300173/2268514468837156700160000000)*n^26 + (215648816287/6204484017332394393600000)*n^25 + (132644124511021/234529495855164508078080000)*n^24 + (8516618187653/1206427447814632243200000)*n^23 + (452342167635389/6708509606841090048000000)*n^22 + (35730373202707/73570956727261593600000)*n^21 + (1251259179315059/485568314399926517760000)*n^20 + (1361341525505047/134880087333312921600000)*n^19 + (145094222851897967/3964119313133371392000000)*n^18 + (268476765510956759/1292009257613839564800000)*n^17 + (559775202052160947/410402940653807861760000)*n^16 + (455829405206713/78297264318873600000)*n^15 + (51349681364745987967/4152886899473055744000000)*n^14 + (321563032543235723/14197903929822412800000)*n^13 + (893790815923908266251/3823850475899421327360000)*n^12 + (151050517333396775323/128749174272707788800000)*n^11 + (1383273494122866878269/1572306939103380480000000)*n^10 - (3754718962122134858933/758700491249885184000000)*n^9 + (222617923041595086359/13219781286929817600000)*n^8 + (4614812385253095736069/53858368206010368000000)*n^7 - (647903194163313269910577/9189584075150519040000000)*n^6 - (1229353439820407340721/20421297944778931200000)*n^5 + (158913710606056931851/161220773248254720000)*n^4 - (11747119919207627/13357730209824000)*n^3 - (29007604104881443/31085582031504000)*n^2 + (443720625949/155272637520)*n - 1
EXAMPLE
Some solutions for n=4
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..2..2....0..0..1..1..2..2....0..0..0..0..0..1....0..0..0..0..2..2
..0..0..1..2..3..3....0..1..1..2..2..2....0..1..2..2..2..2....0..0..1..2..2..4
..0..2..2..3..4..4....0..2..3..4..4..4....0..1..2..3..3..4....0..1..2..2..4..5
CROSSREFS
Sequence in context: A295038 A295529 A296737 * A204196 A238653 A041843
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 24 2011
STATUS
approved