login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of n X k nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.
7

%I #9 Oct 30 2014 05:03:33

%S 1,1,1,1,3,1,1,6,6,1,1,10,32,10,1,1,15,121,121,15,1,1,21,356,1177,356,

%T 21,1,1,28,881,8232,8232,881,28,1,1,36,1925,43483,146300,43483,1925,

%U 36,1,1,45,3830,185051,1874539,1874539,185051,3830,45,1,1,55,7083,666610

%N T(n,k) = Number of n X k nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.

%C Table starts:

%C .1..1.....1.......1..........1.............1................1

%C .1..3.....6......10.........15............21...............28

%C .1..6....32.....121........356...........881.............1925

%C .1.10...121....1177.......8232.........43483...........185051

%C .1.15...356....8232.....146300.......1874539.........17870566

%C .1.21...881...43483....1874539......60758779.......1420586923

%C .1.28..1925..185051...17870566....1420586923......83834499040

%C .1.36..3830..666610..133496644...24496279000....3569257400553

%C .1.45..7083.2105474..817995997..324818660255..111459151645204

%C .1.55.12352.5980085.4261304129.3450301922085.2641129540510016

%H R. H. Hardin, <a href="/A202812/b202812.txt">Table of n, a(n) for n = 1..312</a>

%F Empirical: columns of T(n,k) are polynomials in n of degree k*(k-1).

%F For elements increasing by 0..d instead of 0..2, columns are a polynomial of degree d*k*(k-1)/2.

%e Some solutions for n=5, k=3:

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0

%e ..0..0..0....0..0..0....0..0..1....0..0..0....0..0..2....0..0..2....0..0..1

%e ..0..0..0....0..0..2....0..2..2....0..0..1....0..2..2....0..1..2....0..0..2

%e ..0..0..1....0..2..2....0..2..2....0..2..3....0..2..3....0..1..2....0..0..2

%e ..0..0..1....0..2..4....0..2..2....0..2..3....0..2..4....0..2..4....0..0..2

%Y Column 2 is A000217.

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Dec 24 2011