login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131235
Triangle read by rows: T(n,k) is number of (n-k) X k matrices, k=0..n, with nonnegative integer entries and every row and column sum <= 2.
5
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 26, 10, 1, 1, 15, 79, 79, 15, 1, 1, 21, 189, 451, 189, 21, 1, 1, 28, 386, 1837, 1837, 386, 28, 1, 1, 36, 706, 5776, 12951, 5776, 706, 36, 1, 1, 45, 1191, 15085, 66021, 66021, 15085, 1191, 45, 1, 1, 55, 1889, 34399, 258355, 551681, 258355, 34399, 1889, 55, 1
OFFSET
0,5
COMMENTS
Row sums give A131236.
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(a).
FORMULA
G.f. column 2: (-1-x-6*x^2+x^3+x^4)/(x-1)^5. - R. J. Mathar, Mar 20 2018
T(n,2) = (4+8*n+5*n^2+6*n^3+n^4)/4. - R. J. Mathar, Mar 20 2018
G.f. column 3: -(1+3*x+30*x^2+73*x^3+24*x^4-48*x^5+7*x^6)/(x-1)^7 . - R. J. Mathar, Mar 20 2018
T(n,3) = (8+58*n^2+3*n^3+n^4+9*n^5+n^6)/8. - R. J. Mathar, Mar 20 2018
EXAMPLE
1;
1,1;
1,3,1;
1,6,6,1;
1,10,26,10,1;
1,15,79,79,15,1;
1,21,189,451,189,21,1;
...
or as a symmetric array
1 1 1 1 1 1 1 ...
1 3 6 10 15 21 ...
1 6 26 79 189 ..
1 10 79 451 ..
1 15 189 ..
1 21 ..
MAPLE
A131235 := proc(m, n)
exp((x*y*(3-x*y)+(x+y)*(2-x*y))/2/(1-x*y))/sqrt(1-x*y) ;
coeftayl(%, y=0, n)*n!;
coeftayl(%, x=0, m)*m! ;
end proc: # R. J. Mathar, Mar 20 2018
MATHEMATICA
T[n_, k_] := Module[{ex}, ex = Exp[(x*y*(3 - x*y) + (x + y)*(2 - x*y))/2/(1 - x*y)]/Sqrt[1 - x*y]; SeriesCoefficient[ex, {y, 0, k}]*k! // SeriesCoefficient[#, {x, 0, n}]*n!&];
Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023, after R. J. Mathar *)
CROSSREFS
Cf. A049088 (diagonal), A131236, A131237, A088699 and A086885 (sums <= 1), A000217 (column 1)
Sequence in context: A100862 A098568 A180959 * A202812 A157243 A146769
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Jun 20 2007
STATUS
approved