login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is number of (n-k) X k matrices, k=0..n, with nonnegative integer entries and every row and column sum <= 2.
5

%I #23 Sep 14 2023 08:01:06

%S 1,1,1,1,3,1,1,6,6,1,1,10,26,10,1,1,15,79,79,15,1,1,21,189,451,189,21,

%T 1,1,28,386,1837,1837,386,28,1,1,36,706,5776,12951,5776,706,36,1,1,45,

%U 1191,15085,66021,66021,15085,1191,45,1,1,55,1889,34399,258355,551681,258355,34399,1889,55,1

%N Triangle read by rows: T(n,k) is number of (n-k) X k matrices, k=0..n, with nonnegative integer entries and every row and column sum <= 2.

%C Row sums give A131236.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.65(a).

%F G.f. column 2: (-1-x-6*x^2+x^3+x^4)/(x-1)^5. - _R. J. Mathar_, Mar 20 2018

%F T(n,2) = (4+8*n+5*n^2+6*n^3+n^4)/4. - _R. J. Mathar_, Mar 20 2018

%F G.f. column 3: -(1+3*x+30*x^2+73*x^3+24*x^4-48*x^5+7*x^6)/(x-1)^7 . - _R. J. Mathar_, Mar 20 2018

%F T(n,3) = (8+58*n^2+3*n^3+n^4+9*n^5+n^6)/8. - _R. J. Mathar_, Mar 20 2018

%e 1;

%e 1,1;

%e 1,3,1;

%e 1,6,6,1;

%e 1,10,26,10,1;

%e 1,15,79,79,15,1;

%e 1,21,189,451,189,21,1;

%e ...

%e or as a symmetric array

%e 1 1 1 1 1 1 1 ...

%e 1 3 6 10 15 21 ...

%e 1 6 26 79 189 ..

%e 1 10 79 451 ..

%e 1 15 189 ..

%e 1 21 ..

%p A131235 := proc(m,n)

%p exp((x*y*(3-x*y)+(x+y)*(2-x*y))/2/(1-x*y))/sqrt(1-x*y) ;

%p coeftayl(%,y=0,n)*n!;

%p coeftayl(%,x=0,m)*m! ;

%p end proc: # _R. J. Mathar_, Mar 20 2018

%t T[n_, k_] := Module[{ex}, ex = Exp[(x*y*(3 - x*y) + (x + y)*(2 - x*y))/2/(1 - x*y)]/Sqrt[1 - x*y]; SeriesCoefficient[ex, {y, 0, k}]*k! // SeriesCoefficient[#, {x, 0, n}]*n!&];

%t Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 14 2023, after _R. J. Mathar_ *)

%Y Cf. A049088 (diagonal), A131236, A131237, A088699 and A086885 (sums <= 1), A000217 (column 1)

%K nonn,tabl

%O 0,5

%A _Vladeta Jovovic_, Jun 20 2007