login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180959
Generalized Narayana triangle for secant.
2
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 23, 10, 1, 1, 15, 65, 65, 15, 1, 1, 21, 150, 321, 150, 21, 1, 1, 28, 301, 1197, 1197, 301, 28, 1, 1, 36, 546, 3584, 7531, 3584, 546, 36, 1, 1, 45, 918, 9114, 35523, 35523, 9114, 918, 45, 1, 1, 55, 1455, 20490, 132045, 276433, 132045, 20490, 1455, 55, 1
OFFSET
0,5
FORMULA
G.f.: 1/(1 -x -x*y -x^2*y/(1 -x -x*y -4*x^2*y/(1 -x -x*y -9*x^2*y/(1 - ... (continued fraction).
E.g.f.: exp((1+y)*x) * sec(sqrt(y)*x).
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2(k-j))*E_(k-j), E_n = A000364(n).
EXAMPLE
Triangle begins
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 23, 10, 1;
1, 15, 65, 65, 15, 1;
1, 21, 150, 321, 150, 21, 1;
1, 28, 301, 1197, 1197, 301, 28, 1;
1, 36, 546, 3584, 7531, 3584, 546, 36, 1;
1, 45, 918, 9114, 35523, 35523, 9114, 918, 45, 1;
1, 55, 1455, 20490, 132045, 276433, 132045, 20490, 1455, 55, 1;
MATHEMATICA
T[n_, k_]:= Sum[Binomial[n, j]*Binomial[n-j, 2*(k-j)]*(-1)^(k-j)*EulerE[2*Abs[k-j]], {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A000364:= func< n | (4^(n+1)/(2*n+2))*( Evaluate(BernoulliPolynomial(n+1), 3/4) - Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;
A180959:= func< n, k | (&+[ Binomial(n, j)*Binomial(n-j, 2*(k-j))*Abs(A000364(2*Abs(k-j))): j in [0..n]]) >;
[A180959(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A180959(n, k): return sum( binomial(n, j)*binomial(n-j, 2*(k-j))*abs(euler_number(2*abs(k-j))) for j in (0..n))
flatten([[A180959(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
CROSSREFS
Cf. A000364.
Sequence in context: A088925 A100862 A098568 * A131235 A202812 A157243
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 28 2010
STATUS
approved