OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
G.f.: 1/(1 -x -x*y -x^2*y/(1 -x -x*y -4*x^2*y/(1 -x -x*y -9*x^2*y/(1 - ... (continued fraction).
E.g.f.: exp((1+y)*x) * sec(sqrt(y)*x).
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2(k-j))*E_(k-j), E_n = A000364(n).
EXAMPLE
Triangle begins
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 23, 10, 1;
1, 15, 65, 65, 15, 1;
1, 21, 150, 321, 150, 21, 1;
1, 28, 301, 1197, 1197, 301, 28, 1;
1, 36, 546, 3584, 7531, 3584, 546, 36, 1;
1, 45, 918, 9114, 35523, 35523, 9114, 918, 45, 1;
1, 55, 1455, 20490, 132045, 276433, 132045, 20490, 1455, 55, 1;
MATHEMATICA
T[n_, k_]:= Sum[Binomial[n, j]*Binomial[n-j, 2*(k-j)]*(-1)^(k-j)*EulerE[2*Abs[k-j]], {j, 0, n}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A000364:= func< n | (4^(n+1)/(2*n+2))*( Evaluate(BernoulliPolynomial(n+1), 3/4) - Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;
A180959:= func< n, k | (&+[ Binomial(n, j)*Binomial(n-j, 2*(k-j))*Abs(A000364(2*Abs(k-j))): j in [0..n]]) >;
[A180959(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A180959(n, k): return sum( binomial(n, j)*binomial(n-j, 2*(k-j))*abs(euler_number(2*abs(k-j))) for j in (0..n))
flatten([[A180959(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 06 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 28 2010
STATUS
approved