The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180958 Diagonal sums of generalized Narayana triangle A180957. 2
 1, 1, 2, 2, 2, -1, -8, -25, -57, -114, -202, -322, -447, -496, -271, 625, 2914, 7762, 16834, 32063, 54760, 83319, 108375, 103726, 11110, -282498, -973439, -2366432, -4869919, -8903455, -14604094, -21135454, -25294718, -19009153, 14697432, 107405319, 311830247, 705982670, 1386882198, 2436851006, 3830805953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1). FORMULA G.f.: ( 1-x-x^2 ) / ( (1+x)*(1-3*x+2*x^2+x^3) ). a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(k-j) * binomial(n-k, j) * binomial(n-k-j, 2*(k-j)). MATHEMATICA LinearRecurrence[{2, 1, -3, -1}, {1, 1, 2, 2}, 51] (* G. C. Greubel, Apr 06 2021 *) PROG (Magma) I:=[1, 1, 2, 2]; [n le 4 select I[n] else 2*Self(n-1) +Self(n-2) -3*Self(n-3) -Self(n-4): n in [1..51]]; // G. C. Greubel, Apr 06 2021 (Sage) [sum( sum( (-1)^(k-j)*binomial(n-k, j)*binomial(n-k-j, 2*(k-j)) for j in (0..n-k)) for k in (0..n//2)) for n in (0..50)] # G. C. Greubel, Apr 06 2021 CROSSREFS Cf. A180957. Sequence in context: A128207 A340740 A306707 * A295854 A230630 A343957 Adjacent sequences: A180955 A180956 A180957 * A180959 A180960 A180961 KEYWORD easy,sign AUTHOR Paul Barry, Sep 28 2010 EXTENSIONS Terms a(31) onward added by G. C. Greubel, Apr 06 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 15:42 EDT 2024. Contains 374974 sequences. (Running on oeis4.)