OFFSET
0,12
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
G.f.: 1/(1 -x -x*y + x/(1 -x -x*y)) = (1 -x*(1+y))/(1 -2*x*(1+y) +x^2*(1 +3*y +y^2)).
E.g.f.: exp((1+y)*x) * cos(sqrt(y)*x).
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*binomial(n,j)*binomial(n-j, 2*(k-j)).
Sum_{k=0..n} T(n, k) = A139011(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A180958(n) (diagonal sums).
EXAMPLE
Triangle begins
1;
1, 1;
1, 1, 1;
1, 0, 0, 1;
1, -2, -5, -2, 1;
1, -5, -15, -15, -5, 1;
1, -9, -30, -41, -30, -9, 1;
1, -14, -49, -77, -77, -49, -14, 1;
1, -20, -70, -112, -125, -112, -70, -20, 1;
1, -27, -90, -126, -117, -117, -126, -90, -27, 1;
1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
MATHEMATICA
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A180957:= func< n, k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >;
[A180957(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A180957(n, k): return sum( (-1)^(k+j)*binomial(n, j)*binomial(n-j, 2*(k-j)) for j in (0..n))
flatten([[A180957(n, k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 28 2010
STATUS
approved