login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180957
Generalized Narayana triangle for (-1)^n.
3
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
OFFSET
0,12
FORMULA
G.f.: 1/(1 -x -x*y + x/(1 -x -x*y)) = (1 -x*(1+y))/(1 -2*x*(1+y) +x^2*(1 +3*y +y^2)).
E.g.f.: exp((1+y)*x) * cos(sqrt(y)*x).
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*binomial(n,j)*binomial(n-j, 2*(k-j)).
Sum_{k=0..n} T(n, k) = A139011(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A180958(n) (diagonal sums).
EXAMPLE
Triangle begins
1;
1, 1;
1, 1, 1;
1, 0, 0, 1;
1, -2, -5, -2, 1;
1, -5, -15, -15, -5, 1;
1, -9, -30, -41, -30, -9, 1;
1, -14, -49, -77, -77, -49, -14, 1;
1, -20, -70, -112, -125, -112, -70, -20, 1;
1, -27, -90, -126, -117, -117, -126, -90, -27, 1;
1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
MATHEMATICA
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
PROG
(Magma)
A180957:= func< n, k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >;
[A180957(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
(Sage)
def A180957(n, k): return sum( (-1)^(k+j)*binomial(n, j)*binomial(n-j, 2*(k-j)) for j in (0..n))
flatten([[A180957(n, k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
CROSSREFS
Variant: A061176.
Sequence in context: A270061 A342059 A061176 * A124780 A369872 A108437
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 28 2010
STATUS
approved