login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061176 Coefficients of polynomials ( (1 -x +sqrt(x))^n + (1 -x -sqrt(x))^n )/2. 8
1, 1, -1, 1, -1, 1, 1, 0, 0, -1, 1, 2, -5, 2, 1, 1, 5, -15, 15, -5, -1, 1, 9, -30, 41, -30, 9, 1, 1, 14, -49, 77, -77, 49, -14, -1, 1, 20, -70, 112, -125, 112, -70, 20, 1, 1, 27, -90, 126, -117, 117, -126, 90, -27, -1, 1, 35, -105, 90, 45, -131, 45, 90, -105, 35, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

The row polynomial pFe(k+1, x) = Sum_{j=0..k+1} T(k+1, j)*x^j is the numerator of the g.f. for the k-th column sequence of A060920, the even part of the bisected Fibonacci triangle.

LINKS

G. C. Greubel, Rows n = 0..50 of the triangle, flattened

FORMULA

T(n, k) = coefficients of x^k of ((1-x+sqrt(x))^n + (1-x-sqrt(x))^n)/2.

T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n, 2*j)*binomial(n-2*j, k-j), if 0 <= k <= floor(n/2) and T(n, k) = (-1)^n*T(n, n-k) if floor(n/2) < k <= n, otherwise 0.

Sum_{k=0..n} T(n, k) = A059841(n) = (1 + (-1)^n)/2. - G. C. Greubel, Apr 06 2021

EXAMPLE

The first few polynomials are:

pFe(0,x) = 1.

pFe(1,x) = 1 -   x.

pFe(2,x) = 1 -   x +   x^2.

pFe(3,x) = 1 - 0*x + 0*x^2 -   x^3.

pFe(4,x) = 1 + 2*x - 5*x^2 + 2*x^3 + x^4.

Number triangle begins as:

  1;

  1, -1;

  1, -1,   1;

  1,  0,   0,  -1;

  1,  2,  -5,   2,    1;

  1,  5, -15,  15,   -5,  -1;

  1,  9, -30,  41,  -30,   9,   1;

  1, 14, -49,  77,  -77,  49, -14, -1;

  1, 20, -70, 112, -125, 112, -70, 20, 1;

MATHEMATICA

T[n_, k_]:= Sum[(-1)^(k+j)*Binomial[n, 2*j]*Binomial[n-2*j, k-j], {j, 0, k}];

Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)

PROG

(Magma)

A061176:= func< n, k | (&+[(-1)^(k+j)*Binomial(n, 2*j)*Binomial(n-2*j, k-j): j in [0..k]]) >;

[A061176(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021

(Sage)

def A061176(n, k): return sum((-1)^(k+j)*binomial(n, 2*j)*binomial(n-2*j, k-j) for j in (0..k))

flatten([[A061176(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021

CROSSREFS

Cf. A059841, A060920, A061177 (companion triangle), A180957.

Sequence in context: A320032 A270061 A342059 * A180957 A124780 A108437

Adjacent sequences:  A061173 A061174 A061175 * A061177 A061178 A061179

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang, Apr 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 17:39 EDT 2022. Contains 356148 sequences. (Running on oeis4.)