login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180956
Triangle read by rows T(n,k) = denominators of A180955/A180956.
2
1, 2, 1, 8, 2, 1, 16, 8, 2, 1, 128, 16, 8, 2, 1, 256, 128, 16, 8, 2, 1, 1024, 256, 128, 16, 8, 2, 1, 2048, 1024, 256, 128, 16, 8, 2, 1, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1, 262144, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1
OFFSET
0,2
FORMULA
From G. C. Greubel, Sep 23 2024: (Start)
T(n, k) = A046161(n-k) = denominator(binomial(2*(n-k), n-k)/4^(n-k)).
T(n, 0) = T(2*n, n) = A046161(n).
Sum_{k=0..n} T(n, k) = Sum_{j=0..n} A046161(j).
Sum_{k=0..n} (-1)^k*T(n, k) = A046161(n+1) + Sum_{j=0..n+1} (-1)^(n+j)*A046161(j).
Sum_{k=0..floor(n/2)} T(n-k, k) = floor(n/2) + (1/2)*Sum_{j=0..n} (1+(-1)^(n+j)) * A046161(j). (End)
EXAMPLE
Triangle starts:
1;
2, 1;
8, 2, 1;
16, 8, 2, 1;
128, 16, 8, 2, 1;
256, 128, 16, 8, 2, 1;
1024, 256, 128, 16, 8, 2, 1;
2048, 1024, 256, 128, 16, 8, 2, 1;
32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
262144, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
MATHEMATICA
A180956[n_, k_]:= Denominator[Binomial[2*(n-k), n-k]/4^(n-k)];
Table[A180956[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 23 2024 *)
PROG
(Magma)
A180956:= func< n, k | Denominator((n-k+1)*Catalan(n-k)/4^(n-k)) >;
[A180956(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2024
(SageMath)
def A180956(n, k): return denominator(binomial(2*(n-k), n-k)/4^(n-k))
flatten([[A180956(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 22 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Sep 28 2010
EXTENSIONS
Offset changed by G. C. Greubel, Sep 23 2024
STATUS
approved