login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Narayana triangle for secant.
2

%I #5 Apr 06 2021 23:09:54

%S 1,1,1,1,3,1,1,6,6,1,1,10,23,10,1,1,15,65,65,15,1,1,21,150,321,150,21,

%T 1,1,28,301,1197,1197,301,28,1,1,36,546,3584,7531,3584,546,36,1,1,45,

%U 918,9114,35523,35523,9114,918,45,1,1,55,1455,20490,132045,276433,132045,20490,1455,55,1

%N Generalized Narayana triangle for secant.

%H G. C. Greubel, <a href="/A180959/b180959.txt">Rows n = 0..50 of the triangle, flattened</a>

%F G.f.: 1/(1 -x -x*y -x^2*y/(1 -x -x*y -4*x^2*y/(1 -x -x*y -9*x^2*y/(1 - ... (continued fraction).

%F E.g.f.: exp((1+y)*x) * sec(sqrt(y)*x).

%F T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2(k-j))*E_(k-j), E_n = A000364(n).

%e Triangle begins

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 6, 6, 1;

%e 1, 10, 23, 10, 1;

%e 1, 15, 65, 65, 15, 1;

%e 1, 21, 150, 321, 150, 21, 1;

%e 1, 28, 301, 1197, 1197, 301, 28, 1;

%e 1, 36, 546, 3584, 7531, 3584, 546, 36, 1;

%e 1, 45, 918, 9114, 35523, 35523, 9114, 918, 45, 1;

%e 1, 55, 1455, 20490, 132045, 276433, 132045, 20490, 1455, 55, 1;

%t T[n_, k_]:= Sum[Binomial[n, j]*Binomial[n-j, 2*(k-j)]*(-1)^(k-j)*EulerE[2*Abs[k-j]], {j, 0, n}];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Apr 06 2021 *)

%o (Magma)

%o A000364:= func< n | (4^(n+1)/(2*n+2))*( Evaluate(BernoulliPolynomial(n+1), 3/4) - Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;

%o A180959:= func< n,k | (&+[ Binomial(n,j)*Binomial(n-j, 2*(k-j))*Abs(A000364(2*Abs(k-j))): j in [0..n]]) >;

%o [A180959(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 06 2021

%o (Sage)

%o def A180959(n,k): return sum( binomial(n,j)*binomial(n-j, 2*(k-j))*abs(euler_number(2*abs(k-j))) for j in (0..n))

%o flatten([[A180959(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 06 2021

%Y Cf. A000364.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Sep 28 2010