OFFSET
0,3
COMMENTS
Generating floretion is Y = .5('i + 'j + 'k + i' + j' + k') + ee. ("ibasek"). This is the same floretion which generates A157240.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-6,4).
FORMULA
a(n+1) - a(n) = A088138(n+1).
a(n+1) = Sum_{k=0..n} A120987(n,k)*(-1)^(n-k). - Philippe Deléham, Oct 25 2011
G.f.: 2*x-2*x/(G(0) + 1) where G(k)= 1 + 2*(2*k+3)*x/(2*k+1 - 2*x*(k+2)*(2*k+1)/(2*x*(k+2) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2012
a(n) = 1/9*(3 + (-1)^floor((n-2)/3)*2^(4+3*floor((n-2)/3)) + (-1)^floor((n-1)/3)*2^(3+3*floor((n-1)/3))). - John M. Campbell, Dec 23 2016
From Colin Barker, May 22 2019: (Start)
a(n) = (2 - (1+i*sqrt(3))^(1+n) + i*(1-i*sqrt(3))^n*(i+sqrt(3))) / 6 where i=sqrt(-1).
a(n) = 3*a(n-1) - 6*a(n-2) + 4*a(n-3) for n>2.
(End)
MATHEMATICA
CoefficientList[Series[x/((1-x)(4x^2-2x+1)), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, -6, 4}, {0, 1, 3}, 40] (* Harvey P. Dale, Oct 27 2013 *)
Table[1/9 (3 + (-1)^Floor[1/3 (-2 + n)] 2^(4 + 3 Floor[1/3 (-2 + n)]) + (-1)^Floor[1/3 (-1 + n)] 2^(3 + 3 Floor[1/3 (-1 + n)])), {n, 0, 500}] (* John M. Campbell, Dec 23 2016 *)
PROG
(PARI) concat(0, Vec(x / ((1 - x)*(1 - 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, May 22 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Feb 25 2009
STATUS
approved