|
|
A366594
|
|
G.f. A(x) satisfies A(x) = 1 + x^3*(1+x)^3*A(x)^4.
|
|
3
|
|
|
1, 0, 0, 1, 3, 3, 5, 24, 60, 102, 258, 816, 1992, 4452, 12012, 33617, 84627, 212823, 577361, 1561077, 4063059, 10715009, 29052015, 78235107, 208358693, 560561391, 1522609569, 4120277283, 11129752269, 30240233739, 82441619605, 224488878600, 611770878012
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/3)} binomial(3*k,n-3*k) * binomial(4*k,k)/(3*k+1).
|
|
PROG
|
(PARI) a(n) = sum(k=0, n\3, binomial(3*k, n-3*k)*binomial(4*k, k)/(3*k+1));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|