OFFSET
0,7
LINKS
Robert Israel, Table of n, a(n) for n = 0..3794
FORMULA
G.f.: A(x) = 2 / (1+sqrt(1-4*x^3*(1+x))).
a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(2*k,k)/(k+1).
(4*n + 8)*a(n) + (22 + 8*n)*a(n + 1) + (14 + 4*n)*a(n + 2) + (-8 - n)*a(n + 4) + (-8 - n)*a(n + 5) = 0. - Robert Israel, Oct 14 2024
MAPLE
f:= gfun:-rectoproc({(4*n + 8)*a(n) + (22 + 8*n)*a(n + 1) + (14 + 4*n)*a(n + 2) + (-8 - n)*a(n + 4) + (-8 - n)*a(n + 5) = 0, a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Oct 14 2024
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(2*k, k)/(k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2023
STATUS
approved