login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157246
Positive numbers y such that y^2 is of the form x^2+(x+343)^2 with integer x.
1
245, 265, 287, 343, 427, 493, 637, 833, 1097, 1295, 1715, 2275, 2693, 3577, 4753, 6317, 7483, 9947, 13223, 15665, 20825, 27685, 36805, 43603, 57967, 77063, 91297, 121373, 161357, 214513, 254135, 337855, 449155, 532117, 707413, 940457, 1250273
OFFSET
1,1
COMMENTS
(-147, a(1)), (-96, a(2)), (-63, a(3)) and (A118611(n), a(n+3)) are solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-7) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 7 = {0, 1, 2, 4, 5}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 7 = {3, 6}.
FORMULA
a(n) = 6*a(n-7)-a(n-14) for n > 14; a(1)=245, a(2)=265, a(3)=287, a(4)=343, a(5)=427, a(6)=493, a(7)=637, a(8)=833, a(9)=1097, a(10)=1295, a(11)=1715, a(12)=2275, a(13)=2693, a(14)=3577.
G.f.: x * (1-x) * (245 +510*x +797*x^2 +1140*x^3 +1567*x^4 +2060*x^5 +2697*x^6 +2060*x^7 +1567*x^8 +1140*x^9 +797*x^10 +510*x^11 +245*x^12) / (1 -6*x^7 +x^14).
a(7*k-3) = 343*A001653(k) for k >= 1.
EXAMPLE
(-147, a(1)) = (-147, 245) is a solution: (-147)^2+(-147+343)^2 = 21609+38416 = 60025 = 245^2.
(A118611(1), a(4)) = (0, 343) is a solution: 0^2+(0+343)^2 = 117649 = 343^2.
(A118611(3), a(6)) = (132, 493) is a solution: 132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
MATHEMATICA
Sqrt[#]&/@Select[Table[x^2+(x+343)^2, {x, -150, 885000}], IntegerQ[ Sqrt[#]]&] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, -1}, {245, 265, 287, 343, 427, 493, 637, 833, 1097, 1295, 1715, 2275, 2693, 3577}, 40](* Harvey P. Dale, Dec 30 2011 *)
PROG
(PARI) {forstep(n=-148, 1000000, [1, 3], if(issquare(n^2+(n+343)^2, &k), print1(k, ", ")))}
CROSSREFS
Cf. A118611, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).
Sequence in context: A013684 A233821 A216233 * A186460 A171994 A129210
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 25 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved