OFFSET
1,1
COMMENTS
(-147, a(1)), (-96, a(2)), (-63, a(3)) and (A118611(n), a(n+3)) are solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-7) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 7 = {0, 1, 2, 4, 5}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 7 = {3, 6}.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,6,0,0,0,0,0,0,-1).
FORMULA
a(n) = 6*a(n-7)-a(n-14) for n > 14; a(1)=245, a(2)=265, a(3)=287, a(4)=343, a(5)=427, a(6)=493, a(7)=637, a(8)=833, a(9)=1097, a(10)=1295, a(11)=1715, a(12)=2275, a(13)=2693, a(14)=3577.
G.f.: x * (1-x) * (245 +510*x +797*x^2 +1140*x^3 +1567*x^4 +2060*x^5 +2697*x^6 +2060*x^7 +1567*x^8 +1140*x^9 +797*x^10 +510*x^11 +245*x^12) / (1 -6*x^7 +x^14).
a(7*k-3) = 343*A001653(k) for k >= 1.
EXAMPLE
MATHEMATICA
Sqrt[#]&/@Select[Table[x^2+(x+343)^2, {x, -150, 885000}], IntegerQ[ Sqrt[#]]&] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, -1}, {245, 265, 287, 343, 427, 493, 637, 833, 1097, 1295, 1715, 2275, 2693, 3577}, 40](* Harvey P. Dale, Dec 30 2011 *)
PROG
(PARI) {forstep(n=-148, 1000000, [1, 3], if(issquare(n^2+(n+343)^2, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 25 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved