OFFSET
1,1
COMMENTS
(-1029, a(1)), (-820, a(2)), (-672, a(3)), (-441, a(3)) and (A118630(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 5, 6}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 2, 4, 7}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {3, 8}.
FORMULA
a(n)=6*a(n-9)-a(n-18) for n > 18; a(1)=1715, a(2)=1781, a(3)=1855, a(4)=2009, a(5)=2401, a(6)=2989, a(7)=3451, a(8)=3821, a(9)=4459, a(10)=5831, a(11)=6865, a(12)=7679, a(13)=9065, a(14)=12005, a(15)=15925, a(16)=18851, a(17)=21145, a(18)=25039.
G.f.: x * (1-x) * (1715 +3496*x +5351*x^2 +7360*x^3 +9761*x^4 +12750*x^5 +16201*x^6 +20022*x^7 +24481*x^8 +20022*x^9 +16201*x^10 +12750*x^11 +9761*x^12 +7360*x^13 +5351*x^14 +3496*x^15 +1715*x^16) / (1 -6*x^9 +x^18).
a(9*k-4) = 2401*A001653(k) for k >= 1.
EXAMPLE
MATHEMATICA
Sqrt[#]&/@Select[Table[2x^2+4802x+5764801, {x, -1200, 510000}], IntegerQ[ Sqrt[ #]]&] (* Harvey P. Dale, Jul 21 2011 *)
PROG
(PARI) {forstep(n=-1032, 540000, [3 , 1], if(issquare(n^2+(n+2401)^2, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 25 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved