login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157247
Positive numbers y such that y^2 is of the form x^2+(x+2401)^2 with integer x.
1
1715, 1781, 1855, 2009, 2401, 2989, 3451, 3821, 4459, 5831, 6865, 7679, 9065, 12005, 15925, 18851, 21145, 25039, 33271, 39409, 44219, 52381, 69629, 92561, 109655, 123049, 145775, 193795, 229589, 257635, 305221, 405769, 539441, 639079, 717149
OFFSET
1,1
COMMENTS
(-1029, a(1)), (-820, a(2)), (-672, a(3)), (-441, a(3)) and (A118630(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 5, 6}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 2, 4, 7}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {3, 8}.
FORMULA
a(n)=6*a(n-9)-a(n-18) for n > 18; a(1)=1715, a(2)=1781, a(3)=1855, a(4)=2009, a(5)=2401, a(6)=2989, a(7)=3451, a(8)=3821, a(9)=4459, a(10)=5831, a(11)=6865, a(12)=7679, a(13)=9065, a(14)=12005, a(15)=15925, a(16)=18851, a(17)=21145, a(18)=25039.
G.f.: x * (1-x) * (1715 +3496*x +5351*x^2 +7360*x^3 +9761*x^4 +12750*x^5 +16201*x^6 +20022*x^7 +24481*x^8 +20022*x^9 +16201*x^10 +12750*x^11 +9761*x^12 +7360*x^13 +5351*x^14 +3496*x^15 +1715*x^16) / (1 -6*x^9 +x^18).
a(9*k-4) = 2401*A001653(k) for k >= 1.
EXAMPLE
(-1029, a(1)) = (-1029, 1715) is a solution: (-1029)^2+(-1029+2401)^2 = 1058841+1882384 = 2941225 = 1715^2.
(A118630(1), a(5)) = (0, 2401) is a solution: 0^2+(0+2401)^2 = 5764801 = 2401^2.
(A118630(3), a(7)) = (924, 3451) is a solution: 924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
MATHEMATICA
Sqrt[#]&/@Select[Table[2x^2+4802x+5764801, {x, -1200, 510000}], IntegerQ[ Sqrt[ #]]&] (* Harvey P. Dale, Jul 21 2011 *)
PROG
(PARI) {forstep(n=-1032, 540000, [3 , 1], if(issquare(n^2+(n+2401)^2, &k), print1(k, ", ")))}
CROSSREFS
Cf. A118630, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).
Sequence in context: A008744 A184090 A297560 * A347969 A267201 A024408
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 25 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved