login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157250 Wilson numbers: n such that the generalized Wilson quotient A157249(n) is divisible by n. 3
1, 5, 13, 563, 5971, 558771, 1964215, 8121909, 12326713, 23025711, 26921605, 341569806, 399292158 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A prime p is a Wilson prime if p divides its Wilson quotient A007619. A number n is a Wilson number if n divides its generalized Wilson quotient A157249.
The sequence contains all Wilson numbers <= 5 x 10^8. Heuristics suggest that #(Wilson numbers < N) is about (6/pi^2) log N, for large N.
A Wilson number is prime if and only if it is a Wilson prime A007540. Only three are known: 5, 13, 563.
The first composite Wilson number 5971 was discovered by Kloss, the others by Agoh, Dilcher, and Skula. Every known composite Wilson number n has at least two odd prime factors, so e(n) = -1.
For additional references and links, see A007540.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, vol. 1, Divisibility and Primality, Chelsea, New York, 1966, p. 65.
LINKS
T. Agoh, K. Dilcher, and L. Skula, Wilson quotients for composite moduli, Math. Comp. 67 (1998), 843-861.
K. E. Kloss, Some Number-Theoretic Calculations, J. Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (1965), 335-336.
J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.
J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.
FORMULA
A157249(n) == 0 mod n.
A001783(n) + e(n) == 0 mod n^2, where e(n) = +1 or -1 according as n does or does not have a primitive root.
EXAMPLE
A157249(13) = (A001783(13) + e(13))/13 = ((13-1)! + 1)/13 = 479001601/13 = 36846277 == 0 mod 13, so 13 is a member. A001783(5971) + e(5971) = A001783(5971) - 1 == 0 mod 5971^2, so 5971 is a member. But A157249(8) = (A001783(8) + e(8))/8 = (3*5*7 - 1)/8 = 13 ==/== 0 mod 8, so 8 is not a member.
MATHEMATICA
f[n_] := Times @@ Select[Range[n], CoprimeQ[n, #]&];
e[1|2|4] = 1; e[n_] := If[MatchQ[FactorInteger[n], {{_?OddQ, _}} | {{2, 1}, {_, _}}], 1, -1];
WilsonQ[n_] := IntegerQ[(f[n] + e[n])/n^2];
Reap[For[k = 1, k < 10^7, k++, If[WilsonQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 11 2018 *)
CROSSREFS
Cf. Wilson quotient A007619, Wilson prime A007540, generalized Wilson quotient A157249, n-phi-torial A001783, numbers having a primitive root A033948.
Sequence in context: A012033 A007540 A290171 * A009157 A153374 A247789
KEYWORD
more,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 02:22 EDT 2024. Contains 371767 sequences. (Running on oeis4.)