This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007540 Wilson primes: primes p such that (p-1)! == -1 (mod p^2).
(Formerly M3838)
5, 13, 563 (list; graph; refs; listen; history; text; internal format)



Suggested by the Wilson-Lagrange Theorem: An integer p > 1 is a prime if and only if (p-1)! == -1 (mod p). Cf. Wilson quotients, A007619.

Sequence is believed to be infinite. Next term is known to be > 2*10^13.

Intersection of the Wilson numbers A157250 and the primes A000040. - Jonathan Sondow, Mar 04 2016


A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.

C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 180.

R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 80.

P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 73.

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 163.


Table of n, a(n) for n=1..3.

Edgar Costa, Robert Gerbicz, and David Harvey, A search for Wilson primes, arXiv:1209.3436 [math.NT], 2012.

Edgar Costa, Robert Gerbicz, and David Harvey, A search for Wilson primes, Math. Comp. 83 (2014), pp. 3071-3091.

James Grime and Brady Haran, What do 5, 13 and 563 have in common? (2014)

E. Lehmer, "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson". Annals of Mathematics 39 (2): 350-360 (1938). doi:10.2307/1968791.

Tapio Rajala, Status of a search for Wilson primes

Eric Weisstein's World of Mathematics, Wilson Prime

Eric Weisstein's World of Mathematics, Integer Sequence Primes

Wikipedia, Wilson prime

P. Zimmermann, Records for prime numbers


Select[Prime[Range[500]], Mod[(# - 1)!, #^2] == #^2 - 1 &] (* Harvey P. Dale, Mar 30 2012 *)


(PARI) forprime(n=2, 10^9, if(Mod((n-1)!, n^2)==-1, print1(n, ", "))) \\ Felix Fröhlich, Apr 28 2014

(PARI) is(n)=prod(k=2, n-1, k, Mod(1, n^2))==-1 \\ Charles R Greathouse IV, Aug 03 2014


from sympy import prime

A007540_list = []

for n in range(1, 10**4):

....p, m = prime(n), 1

....p2 = p*p

....for i in range(2, p):

........m = (m*i) % p2

....if m == p2-1:

........A007540_list.append(p) # Chai Wah Wu, Dec 04 2014


Cf. A007619, A157249, A157250.

Sequence in context: A122900 A145557 A012033 * A157250 A155185 A009157

Adjacent sequences:  A007537 A007538 A007539 * A007541 A007542 A007543




N. J. A. Sloane.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 05:48 EDT 2017. Contains 286939 sequences.