
REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.
C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 180.
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 80.
P. Ribenboim, The Book of Prime Number Records. SpringerVerlag, NY, 2nd ed., 1989, p. 277.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. Vardi, Computational Recreations in Mathematica. AddisonWesley, Redwood City, CA, 1991, p. 73.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 163.


LINKS

Table of n, a(n) for n=1..3.
Edgar Costa, Robert Gerbicz, and David Harvey, A search for Wilson primes, arXiv:1209.3436, 2012
Lehmer, E. (1938). "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson". Annals of Mathematics 39 (2): 350360. doi:10.2307/1968791.
Eric Weisstein's World of Mathematics, Wilson Prime
P. Zimmermann, RECORDS FOR PRIME NUMBERS
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Wikipedia, Wilson prime
Status of a search for Wilson primes
