Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 17 2023 07:14:09
%S 1715,1781,1855,2009,2401,2989,3451,3821,4459,5831,6865,7679,9065,
%T 12005,15925,18851,21145,25039,33271,39409,44219,52381,69629,92561,
%U 109655,123049,145775,193795,229589,257635,305221,405769,539441,639079,717149
%N Positive numbers y such that y^2 is of the form x^2+(x+2401)^2 with integer x.
%C (-1029, a(1)), (-820, a(2)), (-672, a(3)), (-441, a(3)) and (A118630(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
%C lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
%C lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 5, 6}.
%C lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 2, 4, 7}.
%C lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {3, 8}.
%F a(n)=6*a(n-9)-a(n-18) for n > 18; a(1)=1715, a(2)=1781, a(3)=1855, a(4)=2009, a(5)=2401, a(6)=2989, a(7)=3451, a(8)=3821, a(9)=4459, a(10)=5831, a(11)=6865, a(12)=7679, a(13)=9065, a(14)=12005, a(15)=15925, a(16)=18851, a(17)=21145, a(18)=25039.
%F G.f.: x * (1-x) * (1715 +3496*x +5351*x^2 +7360*x^3 +9761*x^4 +12750*x^5 +16201*x^6 +20022*x^7 +24481*x^8 +20022*x^9 +16201*x^10 +12750*x^11 +9761*x^12 +7360*x^13 +5351*x^14 +3496*x^15 +1715*x^16) / (1 -6*x^9 +x^18).
%F a(9*k-4) = 2401*A001653(k) for k >= 1.
%e (-1029, a(1)) = (-1029, 1715) is a solution: (-1029)^2+(-1029+2401)^2 = 1058841+1882384 = 2941225 = 1715^2.
%e (A118630(1), a(5)) = (0, 2401) is a solution: 0^2+(0+2401)^2 = 5764801 = 2401^2.
%e (A118630(3), a(7)) = (924, 3451) is a solution: 924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
%t Sqrt[#]&/@Select[Table[2x^2+4802x+5764801,{x,-1200,510000}], IntegerQ[ Sqrt[ #]]&] (* _Harvey P. Dale_, Jul 21 2011 *)
%o (PARI) {forstep(n=-1032, 540000, [3 ,1], if(issquare(n^2+(n+2401)^2, &k), print1(k, ",")))}
%Y Cf. A118630, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).
%K nonn
%O 1,1
%A _Klaus Brockhaus_, Feb 25 2009
%E G.f. adapted to the offset by _Bruno Berselli_, Apr 01 2011