The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2). 8
 0, 8, 8, 4, 8, 3, 3, 8, 2, 4, 5, 4, 3, 6, 8, 7, 1, 4, 2, 9, 4, 3, 2, 7, 8, 3, 9, 0, 8, 5, 7, 6, 0, 4, 5, 6, 6, 4, 7, 9, 7, 8, 7, 5, 2, 3, 8, 6, 7, 5, 0, 5, 9, 1, 6, 7, 4, 8, 8, 9, 2, 7, 6, 5, 5, 9, 4, 7, 4, 2, 7, 8, 9, 2, 8, 7, 4, 3, 5, 7, 1, 4, 5, 5, 8, 2, 7, 7, 9, 4, 6, 0, 0, 4, 7, 0, 5, 8, 6, 6, 1, 9, 5, 5, 9, 6, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's MathWorld, Multivariate Zeta Function Wikipedia, Multiple zeta function FORMULA zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6). EXAMPLE 0.088483382454368714294327839085760456647978752386750591674889276559474... MATHEMATICA Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First] PROG (PARI) zetamult([4, 2]) \\ Charles R Greathouse IV, Jan 21 2016 CROSSREFS Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4). Sequence in context: A126600 A254615 A154841 * A112116 A228719 A021117 Adjacent sequences:  A258981 A258982 A258983 * A258985 A258986 A258987 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jun 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 13:01 EDT 2020. Contains 334748 sequences. (Running on oeis4.)