login
A258985
Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2).
8
0, 3, 8, 5, 7, 5, 1, 2, 4, 3, 4, 2, 7, 5, 3, 2, 5, 5, 5, 0, 5, 9, 2, 5, 4, 6, 4, 3, 7, 2, 9, 9, 5, 5, 7, 0, 0, 1, 9, 7, 3, 4, 8, 4, 1, 6, 9, 8, 9, 0, 9, 0, 0, 8, 3, 3, 1, 0, 4, 9, 3, 7, 2, 9, 3, 3, 5, 8, 2, 3, 6, 5, 9, 1, 0, 8, 4, 5, 3, 8, 3, 6, 5, 5, 6, 8, 4, 8, 8, 2, 9, 4, 6, 4, 5, 6, 4, 7, 3, 1, 5, 5, 6, 4, 9
OFFSET
0,2
FORMULA
zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7).
EXAMPLE
0.03857512434275325550592546437299557001973484169890900833104937293358...
MATHEMATICA
Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First]
PROG
(PARI) zetamult([5, 2]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Sequence in context: A379975 A236229 A343920 * A077151 A375596 A342934
KEYWORD
nonn,cons,easy,changed
AUTHOR
STATUS
approved