login
A258980
Primes in A258978.
3
5, 2801, 22621, 30941, 22621, 637421, 346201, 346201, 346201, 2625641, 837931, 16007041, 3835261, 209102521, 209102521, 15018571, 262209281, 21700501, 30397351, 209102521, 209102521, 693025471, 147753211, 4244897281, 1740422941, 6903678241, 2439903211
OFFSET
1,1
COMMENTS
These primes are neither sorted nor uniqued. They are listed in the order found in A258978.
FORMULA
a(n) = A258978(A258979(n)).
MAPLE
with(numtheory): A258980:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4), 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4, NULL): seq(A258980(n), n=1..300); # Wesley Ivan Hurt, Jul 09 2015
MATHEMATICA
Select[Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 10000}], PrimeQ]
Select[Table[Cyclotomic[5, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
PROG
(Magma) [m: n in [1..200] | IsPrime(m) where m is (1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4)]; // Vincenzo Librandi, Jun 16 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Price, Jun 15 2015
STATUS
approved