|
|
|
|
2, 17, 37, 197, 577, 577, 401, 1297, 577, 1601, 3137, 2917, 3137, 8101, 7057, 15377, 2917, 14401, 14401, 8101, 7057, 15877, 5477, 15377, 15877, 7057, 50177, 14401, 32401, 8101, 14401, 24337, 44101, 78401, 12101, 57601, 44101, 32401, 50177, 24337, 30977
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
These primes are neither sorted nor uniqued. They are listed in the order found in A258974.
|
|
LINKS
|
Robert Price, Table of n, a(n) for n = 1..1786
OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
|
|
FORMULA
|
a(n) = A258974(A258976(n)).
|
|
MAPLE
|
with(numtheory): A258977:=n->`if`(isprime(1+sigma(n)^2), 1+sigma(n)^2, NULL): seq(A258977(n), n=1..300); # Wesley Ivan Hurt, Jul 09 2015
|
|
MATHEMATICA
|
Select[Table[1 + DivisorSigma[1, n]^2, {n, 10000}], PrimeQ]
Select[Table[Cyclotomic[4, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
|
|
PROG
|
(Magma) [m: n in [1..200] | IsPrime(m) where m is 1 + DivisorSigma(1, n)^2]; // Vincenzo Librandi, Jun 16 2015
(PARI) for(n=1, 100, p=1+sigma(n)^2; if(isprime(p), print1(p, ", "))) \\ Derek Orr, Jun 18 2015
|
|
CROSSREFS
|
Cf. A000203, A258974, A258976.
Sequence in context: A095075 A307161 A294560 * A069042 A121923 A212276
Adjacent sequences: A258974 A258975 A258976 * A258978 A258979 A258980
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert Price, Jun 15 2015
|
|
STATUS
|
approved
|
|
|
|