|
|
A001102
|
|
Numbers k such that k / (sum of digits of k) is a square.
|
|
7
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 81, 100, 144, 150, 192, 200, 225, 288, 300, 320, 324, 375, 400, 441, 500, 512, 600, 640, 648, 700, 704, 735, 800, 832, 882, 900, 960, 1014, 1088, 1200, 1452, 1458, 1521, 1815, 2023
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The sequence is infinite since if m = 10^(2*j) then m / digitsum(m) = m. - Marius A. Burtea, Dec 21 2018
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) mod A007953(a(n)) = 0 and A010052(a(n) / A007953(a(n))) = 1. - Reinhard Zumkeller, Aug 17 2011
|
|
MATHEMATICA
|
Select[Range[2200], IntegerQ[Sqrt[#/Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Feb 25 2012 *)
|
|
PROG
|
(Haskell)
a001102 n = a001102_list !! (n-1)
a001102_list =
filter (\x -> a010052 (x `div` (a007953 x)) == 1) a005349_list
-- Reinhard Zumkeller, Aug 17 2011
(Magma) [n: n in [1..1000] | IsIntegral(n/(&+Intseq(n))) and IsSquare(n/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
|
|
CROSSREFS
|
Subsequence of Niven numbers (A005349); cf. A028839.
Sequence in context: A346535 A227224 A236750 * A051004 A032575 A038186
Adjacent sequences: A001099 A001100 A001101 * A001103 A001104 A001105
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)
|
|
STATUS
|
approved
|
|
|
|