

A028839


Sum of digits of n is a square.


17



1, 4, 9, 10, 13, 18, 22, 27, 31, 36, 40, 45, 54, 63, 72, 79, 81, 88, 90, 97, 100, 103, 108, 112, 117, 121, 126, 130, 135, 144, 153, 162, 169, 171, 178, 180, 187, 196, 202, 207, 211, 216, 220, 225, 234, 243, 252, 259, 261, 268, 270, 277, 286, 295, 301, 306, 310
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Difference between two consecutive terms is never equal to 8.  Carmine Suriano, Mar 31 2014
In this sequence, there is no number of the form 3*k1. In other words, if a(n) is not divisible by 9, it must be of the form 3*k+1.  Altug Alkan, Apr 08 2016


LINKS

Carmine Suriano, Table of n, a(n) for n = 1..1242


EXAMPLE

234511 belongs to the sequence as its sum of digits is 16, a square.


MATHEMATICA

Select[ Range[ 500 ], IntegerQ[ Sqrt[ Apply[ Plus, IntegerDigits[ # ] ] ] ]& ]


PROG

(MAGMA) [n: n in [1..400]  IsSquare(&+Intseq(n))]; // Bruno Berselli, May 26 2011
(PARI) isok(n) = issquare(sumdigits(n)); \\ Michel Marcus, Oct 30 2014


CROSSREFS

Cf. A007953, A028837, A050626.
Cf. A053057 (squares whose digit sum is also a square).
Sequence in context: A020672 A028837 A178241 * A141833 A140292 A208980
Adjacent sequences: A028836 A028837 A028838 * A028840 A028841 A028842


KEYWORD

nonn,base,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Erich Friedman


STATUS

approved



