|
|
A028841
|
|
Iterated sum of digits of n is a Fibonacci number.
|
|
3
|
|
|
1, 2, 3, 5, 8, 10, 11, 12, 14, 17, 19, 20, 21, 23, 26, 28, 29, 30, 32, 35, 37, 38, 39, 41, 44, 46, 47, 48, 50, 53, 55, 56, 57, 59, 62, 64, 65, 66, 68, 71, 73, 74, 75, 77, 80, 82, 83, 84, 86, 89, 91, 92, 93, 95, 98, 100, 101, 102, 104, 107, 109, 110, 111, 113, 116, 118, 119
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Intermediate iterations don't count. For example, with 85, we have 8 + 5 = 13, which is a Fibonacci number, but 1 + 3 = 4, which is not a Fibonacci numbers, so 85 is not in the sequence. - Alonso del Arte, Jan 20 2020
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 + x + x^2 + 2*x^3 + 3*x^4 + x^5) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.
(End)
|
|
EXAMPLE
|
98 -> 9 + 8 = 17 -> 1 + 7 = 8 is a Fibonacci number.
|
|
MATHEMATICA
|
With[{fibo = {1, 2, 3, 5, 8}}, Select[Range[120], MemberQ[fibo, NestWhile[Total[IntegerDigits[#]] &, #, # > 9 &]]&]] (* Harvey P. Dale, Apr 11 2013 *)
|
|
PROG
|
(Scala) def fiboDRQ(n: Int): Boolean = List(1, 2, 3, 5, 8).contains(n % 9)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|