login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028840 Numbers k such that sum of digits of k is a Fibonacci number. 3
0, 1, 2, 3, 5, 8, 10, 11, 12, 14, 17, 20, 21, 23, 26, 30, 32, 35, 41, 44, 49, 50, 53, 58, 62, 67, 71, 76, 80, 85, 94, 100, 101, 102, 104, 107, 110, 111, 113, 116, 120, 122, 125, 131, 134, 139, 140, 143, 148, 152, 157, 161, 166, 170, 175, 184, 193, 200, 201, 203, 206 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The subsequence of primes begins: 2, 3, 5, 11, 17, 23, 41, 53, 67, 71, 101, 107, 113, 131, 139, 157, 193, 229, 233, 251 ... - Dario Piazzalunga, Jan 03 2013

The subsequence of Fibonacci numbers begins: 0, 1, 2, 3, 5, 8, 21, 233, ... (no more up to 100000). - Dario Piazzalunga, Jan 03 2013

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

MAPLE

isA000045 := proc(n)

local i, f;

for i from 0 do

f := combinat[fibonacci](i) ;

if f = n then

return true;

elif f > n then

return false;

end if;

end do:

end proc:

isA028840 := proc(n)

isA000045(A007953(n)) ;

end proc:

for n from 0 to 1000 do

if isA028840(n) then

printf("%d, ", n);

end if;

end do: # R. J. Mathar, Apr 17 2013

# second Maple program:

q:= proc(n) option remember; (t->

issqr(t+4) or issqr(t-4))(5*n^2)

end:

a:= proc(n) option remember; local k; for k from

`if`(n=1, 0, 1+a(n-1)) while not q(

add(i, i=convert(k, base, 10))) do od; k

end:

seq(a(n), n=1..66); # Alois P. Heinz, Jan 28 2020

MATHEMATICA

f = Union[Fibonacci[Range[0, 8]]]; t = {}; n = 0; While[c = Total[IntegerDigits[n]]; c < f[[-1]], If[MemberQ[f, c], AppendTo[t, n]]; n++]; t (* T. D. Noe, Jan 03 2013 *)

CROSSREFS

Cf. A000045, A007953, A028841, A028890.

Sequence in context: A351876 A028800 A028841 * A189143 A047605 A295085

Adjacent sequences: A028837 A028838 A028839 * A028841 A028842 A028843

KEYWORD

nonn,base,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Erich Friedman

0 inserted by Dario Piazzalunga, Jan 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 06:39 EDT 2023. Contains 361634 sequences. (Running on oeis4.)