OFFSET
0,1
COMMENTS
Numbers k such that k rotations by the golden angle yields a result between -Pi/2 and Pi/2 radians.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Burghard Herrmann, How integer sequences find their way into areas outside pure mathematics, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 67-71.
P. Prusinkiewicz and A. Lindenmayer, Chapter 4, Phyllotaxis, The Algorithmic Beauty of Plants (1990).
MATHEMATICA
Select[Range@ 150, Or[# < 1/4, # > 3/4] &@ FractionalPart[# GoldenRatio] &] (* Michael De Vlieger, Nov 15 2017 *)
PROG
(R) Phi=(sqrt(5)+1)/2 # Golden ratio
fp=function(x) x-floor(x) # fractional part
M=200
alpha=fp((1:M)*Phi) # angles in turn
PF=c(); PB=c() # Phyllotaxis front and back
for (i in 1:M) if ((alpha[i]>0.25)*(alpha[i]<0.75)) PB=c(PB, i) else PF=c(PF, i)
(PARI) isok(n) = my(phi=(1+sqrt(5))/2); (frac(n*phi)<1/4) || (frac(n*phi)>3/4); \\ Michel Marcus, Nov 14 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Burghard Herrmann, Nov 14 2017
STATUS
approved