login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141769 Beginning of a run of 4 consecutive Niven (or Harshad) numbers. 21
1, 2, 3, 4, 5, 6, 7, 510, 1014, 2022, 3030, 10307, 12102, 12255, 13110, 60398, 61215, 93040, 100302, 101310, 110175, 122415, 127533, 131052, 131053, 196447, 201102, 202110, 220335, 223167, 245725, 255045, 280824, 306015, 311232, 318800, 325600, 372112, 455422 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite. - Amiram Eldar, Jan 03 2020

REFERENCES

Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Curtis Cooper and Robert E. Kennedy, On consecutive Niven numbers, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.

Helen G. Grundman, Sequences of consecutive Niven numbers, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.

Eric Weisstein's World of Mathematics, Harshad Number.

Wikipedia, Harshad number.

Brad Wilson Construction of 2n consecutive n-Niven numbers, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.

FORMULA

This A141769 = { A005349(k) | A005349(k+3) = A005349(k)+3 }. - M. F. Hasler, Jan 03 2022

EXAMPLE

510 is in the sequence because 510, 511, 512 and 513 are all Niven numbers.

MATHEMATICA

nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[4]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 3]], {k, 4, 5*10^5}]; seq (* Amiram Eldar, Jan 03 2020 *)

PROG

(Magma) f:=func<n|n mod &+Intseq(n) eq 0>; a:=[]; for k in [1..500000] do if forall{m:m in [0..3]|f(k+m)} then Append(~a, k); end if; end for; a; // Marius A. Burtea, Jan 03 2020

(PARI) {A141769_first( N=50, L=4, a=List())= for(n=1, oo, n+=L; for(m=1, L, n--%sumdigits(n) && next(2)); listput(a, n); N--|| break); a} \\ M. F. Hasler, Jan 03 2022

CROSSREFS

Cf. A005349, A330927, A154701, A330928, A330929, A330930, A060159 (start of run of 1, 2, ..., 7, exactly n consecutive Harshad numbers).

Cf. A330933, A328211, A328215 (analog for base 2, Zeckendorf- resp. Fibonacci-Niven variants).

Sequence in context: A004880 A065666 A240466 * A004891 A037442 A004902

Adjacent sequences: A141766 A141767 A141768 * A141770 A141771 A141772

KEYWORD

base,nonn

AUTHOR

Sergio Pimentel, Sep 15 2008

EXTENSIONS

More terms from Amiram Eldar, Jan 03 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 08:51 EST 2022. Contains 358585 sequences. (Running on oeis4.)