login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141771
Expansion of (1-sqrt(1-4*x))/(2*x) + 8*x^3/((sqrt(1-4*x))*(1+sqrt(1-4*x))^3).
1
1, 1, 2, 6, 19, 63, 216, 759, 2717, 9867, 36244, 134368, 501942, 1886966, 7131840, 27078705, 103221585, 394827315, 1514797020, 5827192140, 22469489130, 86825411010, 336145233840, 1303626531870, 5063559897474, 19695844095678, 76710709889576, 299125464317904
OFFSET
0,3
LINKS
Miklós Bóna, Permutations with one or two 132-subsequences, Discrete Math., 181 (1998) 267-274.
R. Brignall, S. Huczynska, V. Vatter, Decomposing simple permutations with enumerative consequences, Combinatorica, 28 (2008) 384-400.
FORMULA
a(n) = A000108(n) + A002054(n-2). - R. J. Mathar, Sep 18 2008
a(n) ~ 2^(2*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Jun 29 2013
Conjecture: (n+1) *(n^2+5*n-12) *(n^3-5*n^2+38*n-250)*a(n) -2 *(2*n-3) *(n^2+7*n-6) *(n^3-5*n^2+38*n-250) *a(n-1)=0. - R. J. Mathar, Apr 30 2016
MATHEMATICA
a[n_] := Switch[n, 0, 1, 1, 1, _, CatalanNumber[n] + Binomial[2n-3, n-3]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 06 2016, after R. J. Mathar *)
PROG
(PARI) x='x+O('x^40); Vec((1-sqrt(1-4*x))/(2*x) + 8*x^3/((sqrt(1-4*x))*(1+sqrt(1-4*x))^3)) \\ Michel Marcus, Oct 30 2015
CROSSREFS
Sequence in context: A006724 A057409 A346157 * A001170 A001168 A193111
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 18 2008
STATUS
approved