login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193111
G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(n+1).
7
1, 1, 2, 6, 19, 63, 218, 781, 2869, 10742, 40846, 157318, 612446, 2406100, 9527159, 37981611, 152328497, 614167702, 2487941464, 10121128882, 41330709103, 169362297620, 696187639438, 2870017515884, 11862845007114, 49152859179055
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies the continued fraction:
1 = A(x)/(1+ x*A(x)/(1- x*(1+x)*A(x)/(1+ x^3*A(x)/(1+ x^2*(1-x^2)*A(x)/(1+ x^5*A(x)/(1- x^3*(1+x^3)*A(x)/(1+ x^7*A(x)/(1+ x^4*(1-x^4)*A(x)/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
a(n) ~ c * d^n / n^(3/2), where d = 4.39601711776597002671715735353... and c = 0.541742533522963093430641871... - Vaclav Kotesovec, Oct 23 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 218*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^2 - x^3*A(x)^3 + x^6*A(x)^4 + x^10*A(x)^5 - x^15*A(x)^6 - x^21*A(x)^7 ++--...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 54*x^4 + 188*x^5 + 674*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 111*x^4 + 405*x^5 + 1505*x^6 +...
PROG
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(m+1)), #A-1)); if(n<0, 0, A[n+1])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 16 2011
STATUS
approved